Câu hỏi:

Cho hàm số f(x) có f(0) = 0 và \(f'\left( x \right) = \cos \left( {x + \frac{\pi }{4}} \right){\cos ^2}\left( {2x + \frac{\pi }{2}} \right),\forall x \in R\). Khi đó \(\int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {f\left( x \right){\rm{d}}x} \) bằng

108 Lượt xem
05/11/2021
3.2 6 Đánh giá

A. \(\frac{5}{{18}}\)

B. \(\frac{{10}}{9}\)

C. \(\frac{5}{9}\)

D. 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A. \(y = {x^3} - 3x\)

B. \(y = - {x^3} + 3x\)

C. \(y = {x^4} - 2{x^2}\)

D. \(y = - {x^4} + 2{x^2}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 5:

Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):3x - y + 2z - 7 = 0\). Vectơ nào sau đây là một vectơ pháp tuyến của \((\alpha)\)

A. \(\overrightarrow n = \left( {3; - 1;2} \right)\)

B. \(\overrightarrow n = \left( {3;1;2} \right)\)

C. \(\overrightarrow n = \left( {3;2; - 7} \right)\)

D. \(\overrightarrow n = \left( { - 3;1;2} \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Trong không gian Oxyz, cho điểm B(-1;0;8) và điểm A(4;3;5). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

A. - 5x - 3y + 3z - 14 = 0

B. - 10x - 6y + 6z + 15 = 0

C. - 10x - 6y + 6z - 15 = 0

D. \( - 5x - 3y + 3z + \frac{{15}}{2} = 0\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh