Câu hỏi:
Phương trình \({3^{x - 4}} = 1\) có nghiệm là
A. x = -4
B. x = 4
C. x = 0
D. x = 5
Câu 1: Tập xác định của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^\pi }\) là
A. R \ {1;2}
B. \(\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right).\)
C. (1;2)
D. \(\left( { - \infty ;1} \right] \cup \left[ {2; + \infty } \right).\)
05/11/2021 8 Lượt xem
Câu 2: Cho hàm số y = f(x) có bảng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. \(\left( {2; + \infty } \right).\)
B. \(\left( { - \infty ;1} \right).\)
C. \(\left( {0; + \infty } \right).\)
D. (0;2)
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
Câu 4: Viết công thức tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = ln 4 biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ \(x\left( {0 \le x \le \ln 4} \right),\) ta được thiết diện là một hình vuông có độ dài cạnh là \(\sqrt {x{e^x}} .\)
A. \(V = \int\limits_0^{\ln 4} {x{e^x}dx.} \)
B. \(V = \pi \int\limits_0^{\ln 4} {x{e^x}dx.} \)
C. \(V = \pi \int\limits_0^{\ln 4} {{{\left( {x{e^x}} \right)}^2}dx.} \)
D. \(V = \int\limits_0^{\ln 4} {\sqrt {x{e^x}} } dx.\)
05/11/2021 8 Lượt xem
Câu 5: Cho hàm số f(x) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x - 2} \right)^3}{\left( {x - 3} \right)^4}.\) Số điểm cực trị của hàm số là
A. 2
B. 1
C. 0
D. 3
05/11/2021 7 Lượt xem
Câu 6: Cho a, b, c là các số thực thuộc đoạn [1; 2] thỏa mãn \(\log _2^3a + \log _2^3b + \log _2^3c \le 1.\) Khi biểu thức \(P = {a^3} + {b^3} + {c^3} - 3\left( {{{\log }_2}{a^a} + {{\log }_2}{b^b} + {{\log }_2}{c^c}} \right)\) đạt giá trị lớn nhất thì tổng a + b + c là
A. 3
B. \({3.2^{\frac{1}{{\sqrt[3]{3}}}}}\)
C. 4
D. 6
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
- 16 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận