Câu hỏi:
Phương trình \({3^{x - 4}} = 1\) có nghiệm là
A. x = -4
B. x = 4
C. x = 0
D. x = 5
Câu 1: Trong không gian toạ độ Oxyz, cho đường thẳng \(\left( d \right):\frac{{x + 3}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{2}.\) Mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với (d) có phương trình là
A. \(\left( P \right):x - y - 2z = 0.\)
B. \(\left( P \right):2x - z = 0.\)
C. \(\left( P \right):x - y + 2z + 2 = 0.\)
D. \(\left( P \right):x - y + 2z = 0.\)
05/11/2021 8 Lượt xem
Câu 2: Gọi z0 là nghiệm phức có phần ảo âm của phương trình \(2{z^2} - 2z + 13 = 0.\) Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức \(w = i{z_0}?\)
A. \(M\left( {\frac{5}{4};\frac{1}{4}} \right).\)
B. \(N\left( {\frac{5}{4}; - \frac{1}{4}} \right).\)
C. \(P\left( {\frac{5}{2}; - \frac{1}{2}} \right).\)
D. \(Q\left( {\frac{5}{2};\frac{1}{2}} \right).\)
05/11/2021 9 Lượt xem
Câu 3: Cho tích phân \(I = \int\limits_0^1 {\frac{{dx}}{{\sqrt {4 - {x^2}} }}.} \) Nếu đổi biến số \(x = 2\sin t,t \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thì
A. \(I = \int\limits_0^{\frac{\pi }{6}} {dt} .\)
B. \(I = \int\limits_0^{\frac{\pi }{6}} {tdt} .\)
C. \(I = \int\limits_0^{\frac{\pi }{6}} {\frac{{dt}}{t}} .\)
D. \(I = \int\limits_0^{\frac{\pi }{3}} {dt} .\)
05/11/2021 8 Lượt xem
Câu 4: Viết công thức tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = ln 4 biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ \(x\left( {0 \le x \le \ln 4} \right),\) ta được thiết diện là một hình vuông có độ dài cạnh là \(\sqrt {x{e^x}} .\)
A. \(V = \int\limits_0^{\ln 4} {x{e^x}dx.} \)
B. \(V = \pi \int\limits_0^{\ln 4} {x{e^x}dx.} \)
C. \(V = \pi \int\limits_0^{\ln 4} {{{\left( {x{e^x}} \right)}^2}dx.} \)
D. \(V = \int\limits_0^{\ln 4} {\sqrt {x{e^x}} } dx.\)
05/11/2021 8 Lượt xem
Câu 5: Cho hai số phức \({z_1} = 2 - 7i\) và \({z_2} = - 4 + i.\) Điểm biểu diễn số phức \({z_1} + {z_2}\) trên mặt phẳng tọa độ là điểm nào dưới đây?
A. Q(-2;-6)
B. P(-5;-3)
C. N(6;-8)
D. M(3;-11)
05/11/2021 10 Lượt xem
Câu 6: Xét các số thực a, b thỏa mãn điều kiện \(\frac{1}{3} < b < a < 1.\) Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3.\)
A. min P = 13
B. \(\min P = \frac{1}{{\sqrt[3]{2}}}.\)
C. min P = 9
D. \(\min P = \sqrt[3]{2}.\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
- 16 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 287
- 50
-
18 người đang thi
- 1.4K
- 122
- 50
-
55 người đang thi
- 1.2K
- 75
- 50
-
32 người đang thi
- 1.0K
- 35
- 50
-
50 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận