Câu hỏi: Gọi F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{x}{{\sqrt {8 - {x^2}} }}\) thỏa mãn F(2) = 0, khi đó phương trình F(x) = x có nghiệm là:
A. x = 1
B. x = -1
C. x = 0
D. \(x = 1 - \sqrt 3 \)
Câu 1: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta = {b^2} - 4ac\). Nếu \(\Delta < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?
A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta }}{{2a}}\)
B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{a}\)
18/11/2021 1 Lượt xem
Câu 2: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?
A. Tam giác ABC là tam giác đều.
B. O là tâm đường tròn ngoại tiếp tam giác ABC
C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).
D. O là trọng tâm tam giác ABC
18/11/2021 0 Lượt xem
Câu 3: Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x\) và y = x bằng
A. \(\frac{{13}}{4}.\)
B. \(\frac{{7}}{4}.\)
C. \(\frac{{9}}{4}.\)
D. \(\frac{{9}}{2}.\)
18/11/2021 1 Lượt xem
Câu 4: Biết phương trình \({z^2} + az + b = 0\) có một nghiệm là z = 1 + i. Môđun của số phức w = a + bi là:
A. 3
B. 4
C. \(2\sqrt 2 \)
D. 2
18/11/2021 3 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:
A. \(I\left( {2; - 2;0} \right),R = 5\)
B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)
C. \(I\left( {2;3;1} \right),R = 5\)
D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)
18/11/2021 1 Lượt xem
Câu 6: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{3}\) và mặt phẳng (P):x + 2y + z - 4 = 0. Viết phương trình đường thẳng \(\Delta \) nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với d.
A. \(\frac{{x + 1}}{5} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)
B. \(\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)
C. \(\frac{{x - 1}}{5} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 3}}\)
D. \(\frac{{x - 1}}{{ - 5}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{3}\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 637
- 0
- 40
-
65 người đang thi
- 681
- 13
- 40
-
33 người đang thi
- 598
- 6
- 30
-
27 người đang thi
- 577
- 7
- 30
-
90 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận