Câu hỏi: Gọi F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{x}{{\sqrt {8 - {x^2}} }}\) thỏa mãn F(2) = 0, khi đó phương trình  F(x) = x có nghiệm là:

243 Lượt xem
18/11/2021
3.8 18 Đánh giá

A. x = 1

B. x = -1

C. x = 0

D. \(x = 1 - \sqrt 3 \)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

18/11/2021 2 Lượt xem

Câu 2: Trong không gian với hệ tọa độ Oxyz, một vectơ chỉ phương của đường thẳng d: \(\left\{ \begin{array}{l} x = t\\ y = 2\\ z = 1 - 3t \end{array} \right.\) (t là tham số) có tọa độ là:

A. \(\overrightarrow a  = \left( {1;2; - 3} \right)\)

B. \(\overrightarrow a  = \left( {1;0; - 3} \right)\)

C. \(\overrightarrow a  = \left( {0;2; 1} \right)\)

D. \(\overrightarrow a  = \left( {1;2;1} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Tìm công thức sai

A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)

B. \(\int\limits_a^b {f\left( x \right)dx =  - \int\limits_b^a {f(x)dx} } .\)

C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)

D. \(\int\limits_a^a {f(x)dx = 0} \)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh