Câu hỏi:

Giải phương trình sin3x - 23sin2x=2sinx.cos2x

x=±π3+k2π; x=2π3+k2πkZ

488 Lượt xem
30/11/2021
3.5 6 Đánh giá

A. x=π4+kπ; x=π6+kZ

B. x=π2+k2π; x=π3+k2π; x=2π3+k2πkZ

C. Đáp án khác

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Giải phương trình (sinx+3cosx).sin3x = 2

A. Vô nghiệm

B. x=2π3+kπkZ

C. x=12; x=2π3+kπkZ 

Xem đáp án

30/11/2021 0 Lượt xem

Câu 2:

Giải phương trình cosx+cos3x+2cos5x=0

x=π2+kπ, x=±15arccos1+178+, x=±15arccos1-178+

A. x=±12arccos1+178+, x=±12arccos1-178+

B. x=π2+kπ, x=±12arccos1+157+, x=±12arccos1-157+

C. x=π2+kπ, x=±12arccos1+178+, x=±12arccos1-178+

Xem đáp án

30/11/2021 0 Lượt xem

Câu 4:

Phương trình cos2x4cosx+3=0 có nghiệm là:

x=π+k2π  kZ

A. x=kπ  kZ

B. x=π+kπ  kZ

C. x=k2π  kZ 

Xem đáp án

30/11/2021 0 Lượt xem

Câu 5:

Phương trình sin23x+m23sin3x+m24=0 khi m=1 có nghiệm là:

x=π6+k2π   kZ

A. x=π6+k2π3   kZ

B. x=-π6+k2π3   kZ

C. x=±π6+k2π3   kZ 

Xem đáp án

30/11/2021 0 Lượt xem

Câu 6:

Giải phương trình cosx.cosx2. cos3x2-sinx.sinx2.sin3x2=12

A. x=-π4+kπ; x=π6+k2π; x=5π6+k2π; x=-π2+k2πkZ

Xem đáp án

30/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Trắc nghiệm Một số phương trình lượng giác thường gặp có đáp án (Phần 2)
Thông tin thêm
  • 0 Lượt thi
  • 30 Phút
  • 22 Câu hỏi
  • Học sinh