Câu hỏi: Giải phương trình: \(\left| {\begin{array}{*{20}{c}} 1&1&1&{ - 1}\\ 2&0&3&1\\ 4&x&1&{ - 1}\\ 1&0&{ - 1}&2 \end{array}} \right| = 0\)
A. \(x=5\)
B. \(x = \frac{1}{3}\)
C. 3 câu kia đều sai
D. \(x = \frac{10}{3}\)
Câu 1: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right]\) . Đặt \(B= \left[ {\begin{array}{*{20}{c}} 1&1\\ 1&1 \end{array}} \right]\) . Tính A100.
A. 299B
B. 2100B.
C. 2199B
D. 2200B
30/08/2021 0 Lượt xem
30/08/2021 0 Lượt xem
Câu 3: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông A = (ak,j) cấp n, với ak,j=z(k−1).(j−1) được gọi là ma trận Fourier. Tìm biến đổi Fourier cấp 4.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1&1\\ 1&i&{ - 1}&{ - i}\\ { - 1}&1&{ - 1}&1\\ 1&i&{ - 1}&{ - i} \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1&1\\ 1&{ - i}&{ - 1}&i\\ 1&{ - 1}&1&{ - 1}\\ 1&i&{ - 1}&{ - i} \end{array}} \right)\)
C. 3 câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1&1\\ 1&i&1&{ - i}\\ 1&{ - 1}&{ - 1}&1\\ 1&i&1&i \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu 4: Tìm định thức của ma trận A100, biết \(A = \left( {\begin{array}{*{20}{c}} 1&i\\ 2&{1 + 3i} \end{array}} \right).\)
A. Các câu kia đều sai
B. −250
C. 250
D. 250(1 + i)
30/08/2021 0 Lượt xem
Câu 5: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông A = (ak,j) cấp n, với ak,j=z(k−1).(j−1) được gọi là ma trận Fourier. Tìm biến đổi Fourier cấp 2.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}\\ 1&1 \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ 1&-1 \end{array}} \right)\)
C. 3 câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&{ 1}\\ -1&-1 \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu 6: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào hàng thứ 2, hàng 1 đã được nhân với số 3 và đổi chỗ hàng 2 cho hàng 3. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 3&1&0 \end{array}} \right]\)
B. 3 câu kia đều sai
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&0&1\\ 0&1&0 \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 3&1&0\\ 0&0&1 \end{array}} \right]\)
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 5
- 7 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
96 người đang thi
- 570
- 18
- 25
-
75 người đang thi
- 479
- 15
- 25
-
98 người đang thi
- 408
- 10
- 25
-
87 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận