Câu hỏi:

Đối với bài toán chứng minh P(n) đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

264 Lượt xem
30/11/2021
3.2 5 Đánh giá

A. n = 1

B. B. n = k

C. C. n = k + 1

D. D. n = p

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Một học sinh chứng minh mệnh đề ''8n+1 chia hết cho 7, nN*''(*) như sau:

Giả sử (*) đúng với n = k tức là 8k + 1 chia hết cho 7

Ta có: 8k+1 + 1 = 8(8k+1) - 7, kết hợp với giả thiết 8k + 1 chia hết cho 7 nên suy ra được 8k+1 + 1 chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi nN*

Khẳng định nào sau đây là đúng?

A. Học sinh trên chứng minh đúng.

B. Học sinh chứng minh sai vì không có giả thiết qui nạp.

C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.

D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp

Xem đáp án

30/11/2021 0 Lượt xem

Xem đáp án

30/11/2021 0 Lượt xem

Câu 4:

Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho

a) kQ

b) nQn+1Qnk

Chọn mệnh đề đúng trong các mệnh đề sau.

A. Mọi số nguyên dương đều thuộc Q.

B. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc Q.

C. Mọi số nguyên bé hơn k đều thuộc Q.

D. Mọi số nguyên đều thuộc Q.

Xem đáp án

30/11/2021 0 Lượt xem

Câu 6:

Với nN*, hãy rút gọn biểu thức S=1.4+2.7+3.10+...+n(3n+1)

A. S=n(n+1)2

B. B. S=n(n+2)2

C. C. S=n(n+1)

D. D. S=2n(n+1)

Xem đáp án

30/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Trắc nghiệm Phương pháp quy nạp toán học có đáp án (Nhận biết)
Thông tin thêm
  • 0 Lượt thi
  • 25 Phút
  • 15 Câu hỏi
  • Học sinh