Câu hỏi: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp
A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)
B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)
C. đổi biến số và đặt \(u = \ln (x + 2)\)
D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)
Câu 1: Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?
A. Tam giác ABC là tam giác đều.
B. O là tâm đường tròn ngoại tiếp tam giác ABC
C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).
D. O là trọng tâm tam giác ABC
18/11/2021 0 Lượt xem
Câu 2: Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x\) và y = x bằng
A. \(\frac{{13}}{4}.\)
B. \(\frac{{7}}{4}.\)
C. \(\frac{{9}}{4}.\)
D. \(\frac{{9}}{2}.\)
18/11/2021 1 Lượt xem
Câu 3: Cho phương trình \(a{z^2} + bz + c = 0\,\,(a \ne 0,\,\,a,\,b,\,c \in R)\,\,\) với \(\Delta = {b^2} - 4ac\). Nếu \(\Delta < 0\) thì phương trình có hai nghiệm phức phân biệt \({z_1},\,{z_2}\) được xác định bởi công thức nào sau đây?
A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta }}{{2a}}\)
B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{a}\)
18/11/2021 1 Lượt xem
Câu 4: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:
A. \(I\left( {2; - 2;0} \right),R = 5\)
B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)
C. \(I\left( {2;3;1} \right),R = 5\)
D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)
18/11/2021 1 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(1;-2;5) và vuông góc với mặt phẳng \((\alpha ):4x - 3y + 2z + 5 = 0\) là:
A. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)
B. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)
C. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{3} = \frac{{z - 5}}{2}\)
D. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{{ - 2}}\)
18/11/2021 1 Lượt xem
Câu 6: Cho số phức z thỏa mãn điều kiện \(\frac{{1 - i}}{z} = 1 + i\). Tọa độ điểm M biểu diễn số phức \({\rm{w}} = 2z + 1\) trên mặt phẳng là
A. M(2;1)
B. M(1;-2)
C. M(0;-1)
D. M(-2;1)
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 665
- 0
- 40
-
91 người đang thi
- 711
- 13
- 40
-
30 người đang thi
- 633
- 6
- 30
-
96 người đang thi
- 607
- 7
- 30
-
33 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận