Câu hỏi: Để tính \(\int {x\ln \left( {2 + x} \right)dx} \) thì ta sử dụng phương pháp

321 Lượt xem
18/11/2021
3.8 15 Đánh giá

A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)

B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)

C. đổi biến số và đặt \(u = \ln (x + 2)\)

D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho số phức z thỏa \(z = {\left( {2 + 2i} \right)^2}\). Trong các kết luận sau, kết luận nào đúng.

A. \(z \in R.\)

B. Mô đun của z bằng 1.

C. z có phần thực và phần ảo đều khác 0

D. z là số thuần ảo.

Xem đáp án

18/11/2021 0 Lượt xem

Câu 3: Trong không gian với hệ tọa độ Oxy, cho mặt phẳng \(\left( P \right):x + y - 8 = 0\) và điểm I(-1;-1;0). Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có phương trình là:

A. \({(x - 1)^2} + {(y - 1)^2} + {z^2} = 50\)

B. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 5\sqrt 2 \)

C. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 50\)

D. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 25\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:

A. \(I\left( {2; - 2;0} \right),R = 5\)

B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)

C. \(I\left( {2;3;1} \right),R = 5\)

D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh