Câu hỏi:

Dãy số \(({u_n})\) với \({u_n} = \frac{{{3^n} + {{2.5}^n}}}{{{4^n} + {5^n}}}\)có giới hạn bằng

337 Lượt xem
18/11/2021
3.9 12 Đánh giá

A. 4

B. 2

C. 3

D. 5

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong các giới hạn sau đây, giới hạn nào bằng 2?

A. \(\lim \left( {2{n^2} + n + 3} \right)\)

B. \(\lim \frac{{2{n^5} - {n^4}}}{{ - 3{n^3} + {n^5}}}\)

C. \(\lim \frac{{2{n^2} + 1}}{{{n^4} + 3}}\)

D. \(\lim \frac{{{n^3} - 1}}{{ - 2{n^2} + 4{n^3}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 2:

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} =  - 3,{u_2} = 6\). Tìm \({u_5}\).

A. \({u_5} =  - 24\)

B. \({u_5} = 48\)

C. \({u_5} =  - 48\)

D. \({u_5} = 24\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 3:

Đạo hàm của hàm số \(y = \sin ({x^2} + 1)\) bằng:

A. \(y' = 2x\sin ({x^2} + 1)\).

B. \(y' = 2x\cos ({x^2} + 1)\).

C. \(y' = 2\cos ({x^2} + 1)\) .

D. \(y' = ({x^2} + 1)\cos (2x)\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 5:

Trong các mệnh đề sau, mệnh đề nào sai ?

A. \(\lim \frac{1}{{{n^k}}} = 0\)\(\left( {k \ge 1} \right)\).

B. \(\lim {q^n} =  + \infty \) nếu \(q > 1\) .

C. \(\lim {q^n} =  + \infty \) nếu \(\left| q \right| < 1\).

D. \(\lim {n^k} =  + \infty \) với \(k\) nguyên dương.

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh