Câu hỏi:
Cho x, y là các số thực dương thỏa mãn \(\ln \frac{{\sqrt {1 + xy} }}{{x + y}} = \frac{{{x^2} + {y^2} + xy - 1}}{2}\). Biết giá trị lớn nhất của của biểu thức \(P = \frac{{xy}}{{x + y}}\) bằng \(\frac{{\sqrt a }}{b}\) trong đó a là số nguyên tố. Tính ab2
A. 80
B. 180
C. 48
D. 108
Câu 1: Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số \(y = \frac{{{x^3}}}{3} + m{x^2} - mx - m\) đồng biến trên R?
A. 0
B. 1
C. 3
D. 2
05/11/2021 2 Lượt xem
05/11/2021 2 Lượt xem
Câu 3: Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại B, AB = BC = a, \(AA' = a\sqrt 2 \) , M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM và B'C.
A. \(\frac{{a\sqrt 7 }}{7}\)
B. \(\frac{{a\sqrt 3 }}{2}\)
C. \(\frac{{2a}}{{\sqrt 5 }}\)
D. \(a\sqrt 3 \)
05/11/2021 2 Lượt xem
Câu 4: Cho hàm số \(y = - {x^3} + 2{x^2}\) có đồ thị (C). Có bao nhiêu tiếp tuyến của đồ thị (C) song song với đường thẳng y = x.
A. 2
B. 3
C. 1
D. 4
05/11/2021 1 Lượt xem
05/11/2021 3 Lượt xem
Câu 6: Biết \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số \(y = \frac{{x + 4}}{{x + 1}}\) sao cho độ dài đoạn thẳng AB nhỏ nhất. Tính \(P = y_A^2 + y_B^2 - {x_A}{x_B}\).
A. \(P = 10 - \sqrt 3 \)
B. \(P = 6 - 2\sqrt 3 \)
C. P = 6
D. P = 10
05/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quang Khải
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
22 người đang thi
- 1.2K
- 122
- 50
-
16 người đang thi
- 1.0K
- 75
- 50
-
99 người đang thi
- 831
- 35
- 50
-
75 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận