Câu hỏi:
Cho số thực a > 1. Gọi A, B, C lần lượt là các điểm thuộc đồ thị các hàm số \(y = {a^x};\,y = {\left( {\frac{1}{a}} \right)^x};y = {\log _{\frac{1}{a}}}x.\) Biết tam giác ABC vuông cân đỉnh A, AB = 4 và đường thẳng AC song song với trục Oy. Khi đó giá trị a bằng:
A. 4
B. \(\sqrt {2\,} \)
C. 2
D. \(2\sqrt {2\,} \)
Câu 1: Cho hàm số f(x), bảng xét dấu f'(x) của như sau:
6184b99c68f22.png)
Số điểm cực trị của hàm số đã cho là
6184b99c68f22.png)
A. 1
B. 2
C. 3
D. 0
05/11/2021 2 Lượt xem
Câu 2: Biết \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số \(y = \frac{{x + 4}}{{x + 1}}\) sao cho độ dài đoạn thẳng AB nhỏ nhất. Tính \(P = y_A^2 + y_B^2 - {x_A}{x_B}\).
A. \(P = 10 - \sqrt 3 \)
B. \(P = 6 - 2\sqrt 3 \)
C. P = 6
D. P = 10
05/11/2021 1 Lượt xem
05/11/2021 3 Lượt xem
Câu 4: Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số \(y = \frac{{{x^3}}}{3} + m{x^2} - mx - m\) đồng biến trên R?
A. 0
B. 1
C. 3
D. 2
05/11/2021 2 Lượt xem
Câu 5: Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):2x - y + z - 3 = 0\) cắt nhau theo giao tuyến là đường thẳng \(\left( \Delta \right)\). Một véc tơ chỉ phương của \(\left( \Delta \right)\) có tọa độ là
A. \(\overrightarrow u = \left( {0; - 3;3} \right)\)
B. \(\overrightarrow u = \left( {1;1; - 1} \right)\)
C. \(\overrightarrow u = \left( {0;1;1} \right)\)
D. \(\overrightarrow u = \left( {2; - 1;1} \right)\)
05/11/2021 2 Lượt xem
05/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quang Khải
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
38 người đang thi
- 1.1K
- 122
- 50
-
95 người đang thi
- 914
- 75
- 50
-
43 người đang thi
- 727
- 35
- 50
-
54 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận