Câu hỏi:
Cho một hình chữ nhật có đường chéo có độ dài 5, một cạnh có độ dài 3. Quay hình chữ nhật đó (kể cả các điểm bên trong) quanh trục chứa cạnh có độ dài lớn hơn, ta thu được một khối trụ có thể tích là
A. \(12\pi \)
B. \(48\pi \)
C. \(36\pi \)
D. \(45\pi \)
Câu 1: Cho hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) + 3 = 0\) là
A. 3
B. 1
C. 2
D. 4
05/11/2021 7 Lượt xem
Câu 2: Cho a, b, c, d là các số thực dương, khác 1 bất kì. Mệnh đề nào dưới đây đúng?
A. \({a^c} = {b^d} \Leftrightarrow \ln \left( {\frac{a}{b}} \right) = \frac{d}{c}.\)
B. \({a^c} = {b^d} \Leftrightarrow \ln \left( {\frac{a}{b}} \right) = \frac{c}{d}.\)
C. \({a^c} = {b^d} \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{c}{d}.\)
D. \({a^c} = {b^d} \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{d}{c}.\)
05/11/2021 8 Lượt xem
Câu 3: Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a,AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45o. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
A. \(\frac{{a\sqrt {1315} }}{{89}}.\)
B. \(\frac{{2a\sqrt {1315} }}{{89}}.\)
C. \(\frac{{a\sqrt {1513} }}{{89}}.\)
D. \(\frac{{2a\sqrt {1513} }}{{89}}.\)
05/11/2021 7 Lượt xem
Câu 4: Trong không gian Oxyz, đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{z}{{ - 1}}\) không đi qua điểm nào dưới đây?
A. A(-1;2;0)
B. B(-1;-1;1)
C. C(3;-3;-1)
D. D(1;-2;0)
05/11/2021 7 Lượt xem
05/11/2021 7 Lượt xem
Câu 6: Cho hàm số \(y = \sqrt {{x^2} + 3} - x\ln x\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1; 2]. Khi đó tích M.m bằng
A. \(2\sqrt 7 + 4\ln 2.\)
B. \(2\sqrt 7 + 4\ln 5.\)
C. \(2\sqrt 7 - 4\ln 5.\)
D. \(2\sqrt 7 - 4\ln 2.\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
- 35 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận