Câu hỏi:

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng

340 Lượt xem
05/11/2021
3.6 7 Đánh giá

A. 60o

B. 90o

C. 30o

D. 45o

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

Xem đáp án

05/11/2021 10 Lượt xem

Câu 6:

Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)

B. \(z = \frac{1}{5} + \frac{7}{5}i\)

C. \(z = \frac{1}{5} - \frac{7}{5}i\)

D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh