Câu hỏi:
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng
A. 60o
B. 90o
C. 30o
D. 45o
Câu 1: Trên không gian Oxyz, hình chiếu vuông góc của điểm A(2;5;-3) trên mặt phẳng (Oxz) có tọa độ là:
A. (2;5;0)
B. (0;5;-3)
C. (2;0;-3)
D. (2;5;-3)
05/11/2021 8 Lượt xem
Câu 2: Biết \(\int\limits_0^3 {f\left( x \right)dx = \frac{5}{3}} \) và \(\int\limits_0^4 {f\left( t \right)dt = \frac{3}{5}} \). Tính \(\int\limits_3^4 {f\left( u \right)du} \).
A. \(\frac{8}{{15}}\)
B. \(\frac{14}{{15}}\)
C. \(-\frac{17}{{15}}\)
D. \(-\frac{16}{{15}}\)
05/11/2021 7 Lượt xem
05/11/2021 7 Lượt xem
Câu 4: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 10 = 0,\) điểm A(1;3;2) và đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 1 + t\\ z = 1 - t \end{array} \right.\). Tìm phương trình đường thẳng \(\Delta \) cắt (P) và d lầnlượt tại hai điểm N và M sao cho A là trung điểm của đoạn MN.
A. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{{ - 4}} = \frac{{z + 3}}{{ - 1}}\)
B. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{4} = \frac{{z - 3}}{{ - 1}}\)
C. \(\frac{{x - 6}}{7} = \frac{{y - 1}}{4} = \frac{{z + 3}}{{ - 1}}\)
D. \(\frac{{x + 6}}{7} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{{ - 1}}\)
05/11/2021 9 Lượt xem
Câu 5: Trong không gian tọa độ Oxyz, vị trí tương đối giữa hai đường thẳng \({\Delta _1}:\frac{x}{2} = \frac{{y + 2}}{3} = \frac{z}{4}\) và \({\Delta _2}:\left\{ \begin{array}{l} x = 1 + t\\ y = 2 + t\\ z = 1 + 2t \end{array} \right.\) là
A. Song song
B. Chéo nhau
C. Cắt nhau
D. Trùng nhau
05/11/2021 7 Lượt xem
Câu 6: Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số bằng
A. \( - \frac{{25}}{4}\)
B. \( - \frac{{\sqrt 2 }}{2}\)
C. -6
D. 0
05/11/2021 10 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 120 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận