Câu hỏi:

Cho hình chóp S.ABCD có đáy là hình hình thoi tâm O, \(\Delta ABD\) đều cạnh \(a\sqrt 2 \), SA vuông góc với mặt phẳng đáy và \(SA = \frac{{3a\sqrt 2 }}{2}\) (minh họa như hình bên).Góc giữa đường thẳng SO và mặt phẳng (ABCD) bằng

290 Lượt xem
05/11/2021
3.9 9 Đánh giá

A. 45o

B. 30o

C. 60o

D. 90o

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Họ nguyên hàm của hàm số \(y = {e^x}\left( {1 - \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là

A. \({e^x} + \tan x + C\)

B. \({e^x} - \tan x + C\)

C. \({e^x} - \frac{1}{{\cos x}} + C\)

D. \({e^x} + \frac{1}{{\cos x}} + C\)

Xem đáp án

05/11/2021 7 Lượt xem

Xem đáp án

05/11/2021 7 Lượt xem

Câu 4:

Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):2x - y + z - 3 = 0\). Gọi (S) là mặt cầu có tâm I thuộc \(\Delta\) và tiếp xúc với (P) tại điểm H(1;-1;0). Phương trình của (S) là

A. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\)

B. \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\)

C. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\)

D. \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 37 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh