Câu hỏi:
Cho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { - 2x + 3} - 1}}{{ - \sqrt { - 2x + 3} + \frac{2}{m}}}\) (m khác 0 và là tham số thực). Tập hợp m để hàm số đã cho nghịch biến trên khoảng \(\left( { - \frac{1}{2};\,\,1} \right)\) có dạng \(S = \left( { - \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\), với a, b, c, d là các số thực. Tính P = a - b + c - d.
A. -3
B. -1
C. 0
D. 2
Câu 1: Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):2x - y + z - 3 = 0\). Gọi (S) là mặt cầu có tâm I thuộc \(\Delta\) và tiếp xúc với (P) tại điểm H(1;-1;0). Phương trình của (S) là
A. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\)
B. \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\)
C. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\)
D. \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\)
05/11/2021 7 Lượt xem
Câu 2: Trong không gian Oxyz, cho mặt phẳng \((\alpha)\): 2x + 3z - 1 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của \((\alpha)\)?
A. \(\overrightarrow n = \left( {2\,;\,3\,;\, - 1} \right)\)
B. \(\overrightarrow n = \left( {2\,;\,3\,;\,0} \right)\)
C. \(\overrightarrow n = \left( { - 2\,;\,0\,;\, - 3} \right)\)
D. \(\overrightarrow n = \left( {2\,;\,0\,;\, - 3} \right)\)
05/11/2021 8 Lượt xem
Câu 3: Cho hàm số y = f(x), bảng xét dấu của f'(x) như sau
6184b97f2399f.png)
Số điểm cực tiểu của hàm số đã cho là
6184b97f2399f.png)
A. 0
B. 2
C. 1
D. 3
05/11/2021 8 Lượt xem
Câu 4: Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1;2;3) trên mặt phẳng (Oyz) có tọa độ là
A. (0;2;3)
B. (1;0;3)
C. (1;0;0)
D. (0;2;0)
05/11/2021 7 Lượt xem
Câu 5: Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 2}}{1} = \frac{y}{2} = \frac{{z + 1}}{{ - 1}}\) nhận vectơ nào sau đây làm vectơ chỉ phương?
A. \(\overrightarrow {{u_1}} = \left( {1;2;1} \right)\)
B. \(\overrightarrow {{u_2}} = \left( {2;4;2} \right)\)
C. \(\overrightarrow {{u_3}} = \left( { - 2; - 4;2} \right)\)
D. \(\overrightarrow {{u_4}} = \left( { - 1;2;1} \right)\)
05/11/2021 9 Lượt xem
05/11/2021 8 Lượt xem

- 38 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 285
- 50
-
29 người đang thi
- 1.2K
- 122
- 50
-
88 người đang thi
- 1.1K
- 75
- 50
-
90 người đang thi
- 873
- 35
- 50
-
50 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận