Câu hỏi:

Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a,AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45o. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).

341 Lượt xem
05/11/2021
2.8 6 Đánh giá

A. \(\frac{{a\sqrt {1315} }}{{89}}.\)

B. \(\frac{{2a\sqrt {1315} }}{{89}}.\)

C. \(\frac{{a\sqrt {1513} }}{{89}}.\)

D. \(\frac{{2a\sqrt {1513} }}{{89}}.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho tích phân \(I = \int\limits_0^3 {\frac{x}{{1 + \sqrt {x + 1} }}dx} \). Viết dạng của I khi đặt \(t = \sqrt {x + 1} \).

A. \(\int\limits_1^2 {\left( {2{t^2} + 2t} \right)dt.} \)

B. \(\int\limits_1^2 {\left( {2{t^2} - 2t} \right)dt.} \)

C. \(\int\limits_1^2 {\left( {{t^2} - 2t} \right)dt.} \)

D. \(\int\limits_1^2 {\left( {2{t^2} - t} \right)dt.} \)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 3:

Đồ thị trong hình bên là của hàm số y = f(x), S là diện tích hình phẳng (phần tô đậm trong hình). Chọn khẳng định đúng.

A. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx}  + \int\limits_0^1 {f\left( x \right)dx} .\)

B. \(S = \int\limits_{ - 2}^1 {f\left( x \right)dx} .\)

C. \(S = \int\limits_0^{ - 2} {f\left( x \right)dx}  + \int\limits_0^1 {f\left( x \right)dx} .\)

D. \(S = \int\limits_{ - 2}^0 {f\left( x \right)dx}  - \int\limits_0^1 {f\left( x \right)dx} .\)

Xem đáp án

05/11/2021 10 Lượt xem

Câu 4:

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( {1; - 2; - 3} \right),B\left( { - 1;4;1} \right)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?

A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)

B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)

C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}.\)

D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}.\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 5:

Tập nghiệm của bất phương trình \({3^{2x - 1}} > 27\) là

A. \(\left( {2; + \infty } \right)\)

B. \(\left( {3; + \infty } \right)\)

C. \(\left( {\frac{1}{3}; + \infty } \right)\)

D. \(\left( {\frac{1}{2}; + \infty } \right)\)

Xem đáp án

05/11/2021 8 Lượt xem

Xem đáp án

05/11/2021 9 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
Thông tin thêm
  • 35 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh