Câu hỏi:
Cho hàm số \(f\left( x \right) = \left| {\frac{{3{x^2} + 3mx - 30}}{{3x - 10}}} \right|\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m sao cho \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = 3\). Số phần tử của S là
A. 2
B. 3
C. 0
D. 1
Câu 1: Xét các số thực a, b thỏa mãn điều kiện \( - \ln 3 < \ln b < \ln a < 0\). Khi biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3\) đạt min, hãy tính \({a^3} + b\)
A. \({a^3} + b = 1,3\)
B. \({a^3} + b = 0,9\)
C. \({a^3} + b = 1\)
D. \({a^3} + b = 0,6\)
05/11/2021 8 Lượt xem
Câu 2: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{2}\). Thể tích khối chóp S.ABCD là
A. \(\frac{{{a^3}\sqrt 2 }}{2}\)
B. \({a^3}\sqrt 2 \)
C. \(\frac{{{a^3}\sqrt 2 }}{3}\)
D. \(\frac{{{a^3}\sqrt 2 }}{6}\)
05/11/2021 7 Lượt xem
05/11/2021 9 Lượt xem
05/11/2021 7 Lượt xem
Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng \(\left( ABCD \right)\) và \(SA=a\sqrt{3}\). Gọi M,N lần lượt là trung điểm của SA và CD. Tính khoảng cách giữa hai đường thẳng BD và MN.
A. \(\frac{{3\sqrt 5 a}}{{10}}\)
B. \(\frac{{\sqrt 5 a}}{{10}}\)
C. \(\frac{a}{2}\)
D. a
05/11/2021 9 Lượt xem
Câu 6: Cho hàm số y = f(x) có bảng biến thiên như sau
Giá trị cực tiểu của hàm số là
A. 3
B. 2
C. -1
D. 0
05/11/2021 7 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Chính Thắng
- 31 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận