Câu hỏi:
Cho hai số phức \({z_1} = 1 + 3i,\,{z_2} = 3 - 4i\). Môđun của số phức \(\omega = {z_1} + {z_2}\) bằng
A. \(\sqrt {17} .\)
B. \(\sqrt {15} .\)
C. 17
D. 15
Câu 1: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A\left( {1; - 2; - 3} \right),B\left( { - 1;4;1} \right)\) và đường thẳng \(d:\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm của đoạn AB và song song với d?
A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)
B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\)
C. \(\frac{x}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}.\)
D. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 1}}{2}.\)
05/11/2021 7 Lượt xem
Câu 2: Số phức liên hợp của số phức z = 6 - 4i là
A. \(\overline z = - 6 + 4i.\)
B. \(\overline z = 4 + 6i.\)
C. \(\overline z = 6 + 4i.\)
D. \(\overline z = - 6 - 4i.\)
05/11/2021 7 Lượt xem
Câu 3: Cho khối chóp S.ABC có ABC là tam giác vuông cân tại C, CA = a, (SAB) vuông góc với (ABC) và diện tích tam giác SAB bằng \(\frac{{{a^2}}}{2}\). Tính độ dài đường cao SH của khối chóp S.ABC.
A. a
B. 2a
C. \(a\sqrt 2 .\)
D. \(\frac{{a\sqrt 2 }}{2}.\)
05/11/2021 7 Lượt xem
Câu 4: Cho tích phân \(I = \int\limits_0^3 {\frac{x}{{1 + \sqrt {x + 1} }}dx} \). Viết dạng của I khi đặt \(t = \sqrt {x + 1} \).
A. \(\int\limits_1^2 {\left( {2{t^2} + 2t} \right)dt.} \)
B. \(\int\limits_1^2 {\left( {2{t^2} - 2t} \right)dt.} \)
C. \(\int\limits_1^2 {\left( {{t^2} - 2t} \right)dt.} \)
D. \(\int\limits_1^2 {\left( {2{t^2} - t} \right)dt.} \)
05/11/2021 7 Lượt xem
Câu 5: Trong không gian Oxyz, đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{z}{{ - 1}}\) không đi qua điểm nào dưới đây?
A. A(-1;2;0)
B. B(-1;-1;1)
C. C(3;-3;-1)
D. D(1;-2;0)
05/11/2021 7 Lượt xem
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
- 35 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận