Câu hỏi:
Cho cấp số nhân (un) với u1 = 2 và u4 = 250. Công bội của cấp số cộng đã cho bằng
A. 125
B. 5
C. \(\frac{1}{5}\)
D. \(\frac{{125}}{3}\)
Câu 1: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng
A. \(\frac{{a\sqrt 3 }}{4}\)
B. \(\frac{{a\sqrt 2 }}{4}\)
C. \(\frac{{a\sqrt 5 }}{4}\)
D. \(\frac{{a\sqrt 3 }}{3}\)
05/11/2021 6 Lượt xem
Câu 2: Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số \(y = - {x^2} - x + 1,\,\,y = 2,x = - 1,x = 1\) được tính bởi công thức nào dưới đây?
A. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x + 3){\rm{d}}x\)
B. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x - 1){\rm{d}}x\)
C. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x + 1){\rm{d}}x\)
D. \(S = \int\limits_{ - 1}^1 {({x^2}} + x + 1){\rm{d}}x\)
05/11/2021 8 Lượt xem
Câu 3: Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\). Hỏi hàm số luôn đồng biến trên R khi nào?
A. \(\left[ \begin{array}{l} a = b = 0,c > 0\\ a > 0;{b^2} - 3ac \le 0 \end{array} \right.\)
B. \(\left[ \begin{array}{l} a = b = 0,c > 0\\ a > 0;{b^2} - 3ac \ge 0 \end{array} \right.\)
C. \(\left[ \begin{array}{l} a = b = 0,c > 0\\ a < 0;{b^2} - 3ac \le 0 \end{array} \right.\)
D. \(\left[ \begin{array}{l} a = b = c = 0\\ a < 0;{b^2} - 3ac < 0 \end{array} \right.\)
05/11/2021 6 Lượt xem
Câu 4: Cho hai số phức \({z_1} = 2 - 4i\) và \({z_2} = 1 - 3i.\) Phần ảo của số phức \({z_1} + i\overline {{z_2}} \) bằng
A. 5
B. 3i
C. -5i
D. -3
05/11/2021 6 Lượt xem
Câu 5: Trong không gian Oxyz cho mặt phẳng \(\left( P \right):2x - y + 6 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A. \({\vec n_3} = (2;1;0)\)
B. \({\vec n_1} = (2; - 1;6)\)
C. \({\vec n_2} = (2; - 1;0)\)
D. \({\vec n_4} = (2;1;6)\)
05/11/2021 6 Lượt xem
Câu 6: Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
05/11/2021 6 Lượt xem

- 284 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.2K
- 122
- 50
-
98 người đang thi
- 1.0K
- 75
- 50
-
14 người đang thi
- 839
- 35
- 50
-
62 người đang thi
- 729
- 31
- 50
-
58 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận