Câu hỏi:

Cho các số thực a, b ( a < b). Nếu hàm số y = f(x) có đạo hàm là hàm liên tục trên R thì

265 Lượt xem
05/11/2021
3.0 7 Đánh giá

A. \(\int\limits_a^b {f\left( x \right)dx} = f'\left( a \right) - f'\left( b \right).\)

B. \(\int\limits_a^b {f'\left( x \right)dx} = f\left( b \right) - f\left( a \right).\)

C. \(\int\limits_a^b {f'\left( x \right)dx} = f\left( a \right) - f\left( b \right).\)

D. \(\int\limits_a^b {f\left( x \right)dx} = f'\left( b \right) - f'\left( a \right).\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 4:

Trong không gian Oxyz, cho đường thẳng \(\left( d \right):\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{2}\). Mặt phẳng (P) vuông góc với (d) có véc – tơ pháp tuyến là

A. \(\overrightarrow n \left( {1;2;3} \right).\)

B. \(\overrightarrow n \left( {2; - 1;2} \right).\)

C. \(\overrightarrow n \left( {1;4;1} \right).\)

D. \(\overrightarrow n \left( {2;1;2} \right).\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Cho đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + t\\ y = 1 + t\\ z = 2 + 2t \end{array} \right.\left( {t \in R} \right)\). Phương trình chính tắc của đường thẳng d là:

A. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{2}\)

B. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z + 2}}{2}\)

C. \(\frac{{x + 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 4}}{2}\)

D. \(\frac{{x - 1}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z - 2}}{2}\)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
Thông tin thêm
  • 35 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh