Câu hỏi:
Cho các số thực a, b ( a < b). Nếu hàm số y = f(x) có đạo hàm là hàm liên tục trên R thì
A. \(\int\limits_a^b {f\left( x \right)dx} = f'\left( a \right) - f'\left( b \right).\)
B. \(\int\limits_a^b {f'\left( x \right)dx} = f\left( b \right) - f\left( a \right).\)
C. \(\int\limits_a^b {f'\left( x \right)dx} = f\left( a \right) - f\left( b \right).\)
D. \(\int\limits_a^b {f\left( x \right)dx} = f'\left( b \right) - f'\left( a \right).\)
Câu 1: Cho hàm số \(y = \sqrt {{x^2} + 3} - x\ln x\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1; 2]. Khi đó tích M.m bằng
A. \(2\sqrt 7 + 4\ln 2.\)
B. \(2\sqrt 7 + 4\ln 5.\)
C. \(2\sqrt 7 - 4\ln 5.\)
D. \(2\sqrt 7 - 4\ln 2.\)
05/11/2021 8 Lượt xem
Câu 2: Cho hai số phức \({z_1} = 1 + 3i,\,{z_2} = 3 - 4i\). Môđun của số phức \(\omega = {z_1} + {z_2}\) bằng
A. \(\sqrt {17} .\)
B. \(\sqrt {15} .\)
C. 17
D. 15
05/11/2021 8 Lượt xem
Câu 3: Tập nghiệm của bất phương trình \({\log _3}\left( {{x^2} + 2} \right) \le 3\) là
A. \(S = ( - \infty ; - 5] \cup {\rm{[}}5; + \infty ).\)
B. S = Ø
C. S = R
D. S = [-5;5]
05/11/2021 7 Lượt xem
Câu 4: Cho a, b, c, d là các số thực dương, khác 1 bất kì. Mệnh đề nào dưới đây đúng?
A. \({a^c} = {b^d} \Leftrightarrow \ln \left( {\frac{a}{b}} \right) = \frac{d}{c}.\)
B. \({a^c} = {b^d} \Leftrightarrow \ln \left( {\frac{a}{b}} \right) = \frac{c}{d}.\)
C. \({a^c} = {b^d} \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{c}{d}.\)
D. \({a^c} = {b^d} \Leftrightarrow \frac{{\ln a}}{{\ln b}} = \frac{d}{c}.\)
05/11/2021 8 Lượt xem
Câu 5: Cho hàm số \(y = \sqrt {x + \frac{1}{x}} \). Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) bằng
A. 2
B. \(\sqrt 2 .\)
C. 4
D. 1
05/11/2021 8 Lượt xem
Câu 6: Cho đường thẳng \(d:\left\{ \begin{array}{l} x = - 2 + t\\ y = 1 + t\\ z = 2 + 2t \end{array} \right.\left( {t \in R} \right)\). Phương trình chính tắc của đường thẳng d là:
A. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{2}\)
B. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z + 2}}{2}\)
C. \(\frac{{x + 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 4}}{2}\)
D. \(\frac{{x - 1}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z - 2}}{2}\)
05/11/2021 6 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Thị Hồng Gấm
- 35 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 283
- 50
-
14 người đang thi
- 1.2K
- 122
- 50
-
33 người đang thi
- 995
- 75
- 50
-
97 người đang thi
- 705
- 31
- 50
-
26 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận