Câu hỏi: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)
D. 3 câu kia đều sai
Câu 1: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&6\\ 0&2 \end{array}} \right]\) . Tính A100.
A. \(\left[ {\begin{array}{*{20}{c}} {{2^{100}}}&{300}\\ 0&{{2^{100}}} \end{array}} \right]\)
B. Các câu kia sai
C. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{100}\\ 0&1 \end{array}} \right]\)
D. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{300}\\ 0&1 \end{array}} \right]\)
30/08/2021 0 Lượt xem
Câu 2: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Vết của ma trận AT.A là chuẩn Frobenius của ma trận A. Tìm chuẩn Frobenius của ma trận \(A = \left( {\begin{array}{*{20}{c}} 1&2&{ - 1}\\ 2&3&5\\ 4&1&6 \end{array}} \right).\)
A. Các câu kia sai
B. 27
C. 35
D. 97
30/08/2021 0 Lượt xem
Câu 3: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông Fn = ( fk,j ) cấp n, với fk,j=z(k−1).(j−1) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = ( 2, −1 )T
A. X = (3, 2 )T
B. X = (1, 3)T
C. X = (2, 1)T
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem
Câu 4: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({F_n} = ({f_{k,j}})\) cấp n, với \({f_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = (1,0,1,1)T.
A. Ba câu kia đều sai
B. X = ( 4, −i, 1, i)T
C. X = ( 3, i, 1, −i)T
D. X = ( 3, −i, 1, i)T
30/08/2021 0 Lượt xem
Câu 5: Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} { - 2}&0&{ - 4}\\ 4&2&4\\ 3&2&2 \end{array}} \right)\) . Số nguyên dương k nhỏ nhất thỏa \(r({A^k}) = r({A^{k + 1}})\) gọi là chỉ số của ma trận A. Tìm chỉ số của ma trận A.
A. k = 2
B. k = 1
C. Các câu kia sai
D. k = 3
30/08/2021 0 Lượt xem
Câu 6: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({F_n} = ({f_{k,j}})\) cấp n, với \({f_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = (1,2,0)T.
A. \(X = {(3,\frac{{\sqrt 3 }}{2} + i\frac{1}{2},\frac{{\sqrt 3 }}{2} + i\frac{1}{2})^T}\)
B. Ba câu kia đều sai
C. \(X = {(3,\frac{1}{2} - i\frac{{\sqrt 3 }}{2},\frac{1}{2} + i\frac{{\sqrt 3 }}{2})^T}\)
D. \(X = {(3,-\frac{1}{2} - i\frac{{\sqrt 3 }}{2},\frac{1}{2} + i\frac{{\sqrt 3 }}{2})^T}\)
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 990
- 66
- 25
-
66 người đang thi
- 523
- 18
- 25
-
76 người đang thi
- 436
- 15
- 25
-
55 người đang thi
- 368
- 10
- 25
-
41 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận