Câu hỏi: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)
D. 3 câu kia đều sai
Câu 1: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({A} = ({f_{k,j}})\) cấp n, với \({a_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier cấp 3.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&{ - 1}\\ 1&1&z \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 1&{{z^2}}&z \end{array}} \right)\)
C. Ba câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&z&{{z^2}}\\ 1&{{z^2}}&z \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu 2: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&2&1\\ 2&5&2\\ 3&7&4 \end{array}} \right]\) và M là tập tất cả các phần tử của A-1. Khẳng định nào sau đây đúng?
A. \(\left\{ { - 1,0,2} \right\} \subset M\)
B. \(\left\{ {6,-2,2} \right\} \subset M\)
C. \(\left\{ { 6,-1,0} \right\} \subset M\)
D. \(\left\{ {6,1,3} \right\} \subset M\)
30/08/2021 0 Lượt xem
30/08/2021 0 Lượt xem
Câu 4: Cho vecto đơn vị. Đặt I - u. uT, vecto X = (1,-2,1)T. Tính (I - u. uT).X. Phép biến đổi (I - u. uT) là phép chiếu vecto X lên mặt phẳng P là mặt phẳng qua gốc O nhận u làm vecto pháp tuyến.
A. \(\left( \begin{array}{l} 7/3\\ - 4/3\\ 1/3 \end{array} \right)\)
B. \(\left( \begin{array}{l} 5/3\\ 2/3\\ - 1/3 \end{array} \right)\)
C. 3 câu kia đều sai
D. \(\left( \begin{array}{l} 4/3\\ 1/3\\ 2/3 \end{array} \right)\)
30/08/2021 0 Lượt xem
Câu 5: Cho ma trận A: \(A = \left[ {\begin{array}{*{20}{c}} 1&0&2\\ 2&3&m\\ 3&4&2 \end{array}} \right]\) . Tìm m để hạng của A-1 bằng 3.
A. Cả 3 câu đều sai
B. \(m \ne 1\)
C. \(m \ne 2\)
D. m = 3
30/08/2021 0 Lượt xem
Câu 6: Tính hạng của ma trận: \(A = \left[ {\begin{array}{*{20}{c}} 3&2&4&6&5\\ 2&1&3&5&4\\ 4&5&3&6&7\\ 4&5&3&7&8 \end{array}} \right]\)
A. r( A) = 3.
B. r( A) = 2.
C. r( A) = 4.
D. r( A) = 5.
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.0K
- 66
- 25
-
98 người đang thi
- 551
- 18
- 25
-
70 người đang thi
- 459
- 15
- 25
-
33 người đang thi
- 387
- 10
- 25
-
84 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận