Câu hỏi:
Biết \(\int\limits_0^1 {\ln \left( {2x + 1} \right)dx = \frac{a}{b}\ln 3 - c} \) với \(a,\,\,b,\,\,c\) là các số nguyên dương. Mệnh đề đúng là:
A. a + b = c
B. a - b = c
C. a + b = 2c
D. a - b = 2c
Câu 1: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu có phương trình : \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} \)\(- 4mx + 4y + 2mz + {m^2} + 4m = 0.\)
\(\left( {{S_m}} \right)\) là mặt cầu có bán kính nhỏ nhất khi \(m\) là:
A. m = 0
B. \(m = \frac{1}{2}.\)
C. m = -1
D. \(m = - \frac{3}{2}.\)
05/11/2021 7 Lượt xem
Câu 2: Rút gọn biểu thức \(M = {i^{2018}} + {i^{2019}}\) ta được:
A. M = 1 + i
B. M = -1 + i
C. M = 1 - i
D. M = - 1 - i
05/11/2021 8 Lượt xem
05/11/2021 9 Lượt xem
05/11/2021 8 Lượt xem
Câu 5: Cho \(\int\limits_0^3 {\left( {x - 3} \right)f'\left( x \right)dx} = 12\) và \(f\left( 0 \right) = 3\). Khi đó giá trị \(\int\limits_0^3 {f\left( x \right)dx} \) là:
A. -21
B. -3
C. 12
D. 9
05/11/2021 8 Lượt xem
Câu 6: Trong không gian với hệ tọa độ \(Oxyz\), các phương trình dưới đây, phương trình nào là phương trình của một mặt cầu :
A. \({x^2} + {y^2} + {z^2} \)\(+ 4x - 2xy + 6z + 5 = 0.\)
B. \(2{x^2} + 2{y^2} + 2{z^2} \)\(+ 2x + 5y + 6z + 2019 = 0.\)
C. \({x^2} + {y^2} + {z^2} \)\(+ 4x - 2yz - 1 = 0.\)
D. \(2{x^2} + 2{y^2} + 2{z^2} \)\(- 2x + 5y + 6z - 2019 = 0.\)
05/11/2021 9 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thái Tổ
- 28 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận