Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):2x - y + z - 3 = 0\) cắt nhau theo giao tuyến là đường thẳng \(\left( \Delta \right)\). Một véc tơ chỉ phương của \(\left( \Delta \right)\) có tọa độ là
A. \(\overrightarrow u = \left( {0; - 3;3} \right)\)
B. \(\overrightarrow u = \left( {1;1; - 1} \right)\)
C. \(\overrightarrow u = \left( {0;1;1} \right)\)
D. \(\overrightarrow u = \left( {2; - 1;1} \right)\)
Câu 1: Cho hình chóp S.ABC có SA, SB, S đôi một vuông góc với nhau và \(SA = 2\sqrt 3 \), SB = 2, SC = 3. Tính thể tích khối chóp S.ABC.
A. \(V = 6\sqrt 3 .\)
B. \(V = 4\sqrt 3 .\)
C. \(V = 2\sqrt 3 .\)
D. \(V = 12\sqrt 3 .\)
05/11/2021 2 Lượt xem
Câu 2: Biết \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số \(y = \frac{{x + 4}}{{x + 1}}\) sao cho độ dài đoạn thẳng AB nhỏ nhất. Tính \(P = y_A^2 + y_B^2 - {x_A}{x_B}\).
A. \(P = 10 - \sqrt 3 \)
B. \(P = 6 - 2\sqrt 3 \)
C. P = 6
D. P = 10
05/11/2021 1 Lượt xem
Câu 3: Trong các mệnh đề sau, mệnh đề nào sai?
A. Nếu đường thẳng a song song với mặt phẳng (P) và đường thẳng b vuông góc với mặt phẳng (P) thì a vuông góc với b.
B. Nếu đường thẳng a song song với mặt phẳng (P) và đường thẳng b vuông góc với a thì b vuông góc với mặt phẳng (P).
C. Nếu đường thẳng a song song với đường thẳng b và b song song với mặt phẳng (P) thì a song song hoặc thuộc mặt phẳng (P).
D. Một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc một mặt phẳng thì nó vuông góc với mặt phẳng đó.
05/11/2021 1 Lượt xem
Câu 4: Tìm phương trình tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\).
A. x = -1
B. y = 1
C. y = -1
D. x = 1
05/11/2021 2 Lượt xem
Câu 5: Cho hình nón có độ dài đường sinh bằng 2a và chu vi đáy bằng \(2\pi a\). Tính diện tích xung quanh S của hình nón.
A. \(S = 2\pi {a^2}.\)
B. \(S = \pi {a^2}.\)
C. \(S = \pi a.\)
D. \(S = \frac{{\pi {a^2}}}{3}.\)
05/11/2021 2 Lượt xem
Câu 6: Gọi z0 là nghiệm phức có phần ảo âm của phương trình \(2{z^2} - 6z + 5 = 0\). Tìm \(i{z_0}\)?
A. \(i{z_0} = - \frac{1}{2} + \frac{3}{2}i\)
B. \(i{z_0} = \frac{1}{2} + \frac{3}{2}i\)
C. \(i{z_0} = - \frac{1}{2} - \frac{3}{2}i\)
D. \(i{z_0} = \frac{1}{2} - \frac{3}{2}i\)
05/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quang Khải
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
26 người đang thi
- 1.1K
- 122
- 50
-
20 người đang thi
- 914
- 75
- 50
-
77 người đang thi
- 727
- 35
- 50
-
34 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận