Câu hỏi:
Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( \alpha \right):x - 2y + 3z + 2018 = 0\) có một véctơ pháp tuyến là
A. \(\overrightarrow n = \left( { - 1; - 2;3} \right)\)
B. \(\overrightarrow n = \left( {1; - 2;3} \right)\)
C. \(\overrightarrow n = \left( {1;2;3} \right)\)
D. \(\overrightarrow n = \left( { - 1;2;3} \right)\)
Câu 1: Cho x, y, z là các số thực không âm thỏa \({2^x} + {2^y} + {2^z} = 4\). Giá trị nhỏ nhất của biểu thức P = x +y + z?
A. 4
B. 3
C. 2
D. 1
05/11/2021 1 Lượt xem
Câu 2: Có 25 học sinh được chia thành 2 nhóm A và B, sao cho trong mỗi nhóm đều có nam và nữ. Chọn ngẫu nhiên từ mỗi nhóm một học sinh. Tính xác suất để hai học sinh được chọn có cả nam và nữ. Biết rằng xác suất chọn được hai học sinh nam là 0,57.
A. 0,59
B. 0,02
C. 0,41
D. 0,23
05/11/2021 1 Lượt xem
Câu 3: Tìm tất cả các giá trị tham số m để đồ thị hàm số \(y = \frac{{mx + 1}}{{x - m}}\) đi qua A(1;-3).
A. m = -2
B. m = -1
C. m = 2
D. m = 0
05/11/2021 3 Lượt xem
05/11/2021 1 Lượt xem
Câu 5: Biết \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số \(y = \frac{{x + 4}}{{x + 1}}\) sao cho độ dài đoạn thẳng AB nhỏ nhất. Tính \(P = y_A^2 + y_B^2 - {x_A}{x_B}\).
A. \(P = 10 - \sqrt 3 \)
B. \(P = 6 - 2\sqrt 3 \)
C. P = 6
D. P = 10
05/11/2021 1 Lượt xem
Câu 6: Cho hình lăng trụ đều ABC.A'B'C', biết góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 45o, diện tích tam giác A'BC bằng \({a^2}\sqrt 6 \). Tính diện tích xung quanh của hình trụ ngoại tiếp hình lăng trụ ABC.A'B'C'.
A. \(\frac{{4\pi {a^2}\sqrt 3 }}{3}\)
B. \(2\pi {a^2}\)
C. \(4\pi {a^2}\)
D. \(\frac{{8\pi {a^2}\sqrt 3 }}{3}\)
05/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quang Khải
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
71 người đang thi
- 1.4K
- 122
- 50
-
49 người đang thi
- 1.2K
- 75
- 50
-
74 người đang thi
- 996
- 35
- 50
-
26 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận