Câu hỏi:

Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?

268 Lượt xem
18/11/2021
3.6 14 Đánh giá

A. \(y = {x^3} - 2x + 4.\)

B. \(y = \sqrt {2x - 1} .\)

C. \(y = \tan x.\)

D. \(y = \frac{{x + 2}}{{x - 1}}.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Cho hàm số \(f(x) = \frac{1}{3}{x^3} + \frac{1}{2}{x^2} - 12x - 1\). Giải phương trình \(f'(x) = 0\).

A. \(\left\{ { - 4;3} \right\}\)

B. \(\left[ { - 3;4} \right]\).

C. \(\left[ { - 4;3} \right]\).

D. \(\left( { - \infty ; - 3} \right] \cup \left[ {4; + \infty } \right)\).

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Cho các hàm số \(u = u(x),v = v(x)\). Trong các công thức sau, công thức nào sai?

A. \(\left( {u.v} \right)' = u'.v - u.v'\)

B. \(\left( {\frac{u}{v}} \right)' = \frac{{u'.v - u.v'}}{{{v^2}}},\)\(v = v(x) \ne 0\)

C. \(\left( {u + v} \right)' = u' + v'\)

D. \(\left( {u - v} \right)' = u' - v'\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là

A. \(y' =  - \frac{3}{{{{\left( {x + 1} \right)}^2}}}\)

B. \(y' =  - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\)

C. \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).

D. \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6:

Đạo hàm của hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) là

A. \(y' = \frac{{2x + 2}}{{{{\left( {x + 1} \right)}^2}}}\)

B. y' = 2x + 2

C. \(y' = \frac{{{x^2} + 2x}}{{x + 1}}\)

D. \(y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh