Câu hỏi:
Tìm họ nguyên hàm của hàm số f(x) = sin(2020ax+1) ( Với a là tham số khác 0)
A. \(\int {\sin (2020ax + 1)dx = \frac{1}{{2020}}\cos 2020x + C} \)
B. \(\int {\sin (2020ax + 1)dx = \cos 2020ax + C} \)
C. \(\int {\sin (2020ax + 1)dx = - \frac{1}{{2020a}}\cos (2020ax + 1) + C} \)
D. \(\int {\sin (2020ax + 1)dx} = \cos 2020x + C\)
Câu 1: Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số \(y = - {x^2} - x + 1,\,\,y = 2,x = - 1,x = 1\) được tính bởi công thức nào dưới đây?
A. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x + 3){\rm{d}}x\)
B. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x - 1){\rm{d}}x\)
C. \(S = \int\limits_{ - 1}^1 {( - {x^2}} - x + 1){\rm{d}}x\)
D. \(S = \int\limits_{ - 1}^1 {({x^2}} + x + 1){\rm{d}}x\)
05/11/2021 8 Lượt xem
Câu 2: Cho a là số thực dương tùy ý, \(\ln \frac{{\rm{e}}}{{{a^2}}}\) bằng
A. \(2\left( {1 + \ln a} \right)\)
B. \(1 - \frac{1}{2}\ln a\)
C. \(2\left( {1 - \ln a} \right)\)
D. \(1 - 2\ln a\)
05/11/2021 8 Lượt xem
Câu 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] lần lượt là
A. 40 và 8
B. 40 và -8
C. 15 và -41
D. 40 và -41
05/11/2021 8 Lượt xem
Câu 4: Nghiệm của phương trình \({\log _2}\left( {3{\rm{x}} - 2} \right) = 3\) là
A. x = 8
B. \(x = \frac{{10}}{3}\)
C. x = 1
D. \(x = \frac{1}{3}\)
05/11/2021 7 Lượt xem
Câu 5: Cho cấp số nhân (un) với u1 = 2 và u4 = 250. Công bội của cấp số cộng đã cho bằng
A. 125
B. 5
C. \(\frac{1}{5}\)
D. \(\frac{{125}}{3}\)
05/11/2021 8 Lượt xem
Câu 6: Cho hàm số f(x) có f(0) = -1 và \(f'\left( x \right) = x\left( {6 + 12x + {e^{ - x}}} \right),\forall x \in R\). Khi đó \(\int\limits_0^1 {f\left( x \right)} {\rm{d}}x\) bằng
A. 3e
B. 3e-1
C. 4-3e-1
D. -3e-1
05/11/2021 5 Lượt xem

- 283 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.0K
- 121
- 50
-
95 người đang thi
- 906
- 75
- 50
-
57 người đang thi
- 720
- 35
- 50
-
26 người đang thi
- 618
- 31
- 50
-
37 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận