Câu hỏi:
Tìm giới hạn \(F=\lim\limits _{x \rightarrow-\infty} x\left(\sqrt{4 x^{2}+1}-x\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. 0
D. \(\frac{4}{3}\)
Câu 1: Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh a. Gọi M là trung điểm AD. Giá trị \(\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} \) là:
A. \(\frac{1}{2}{a^2}\)
B. a2
C. \(\frac{3}{4}{a^2}\)
D. \(\frac{3}{2}{a^2}\)
18/11/2021 2 Lượt xem
Câu 2: Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng \({u_n} = \frac{2}{n}\)
A. d = Ø
B. \(d = \frac{1}{2}\)
C. d = -3
D. d = 1
18/11/2021 2 Lượt xem
Câu 3: \(\text { Kết quả của giới hạn } \lim \left(n^{2} \sin \frac{n \pi}{5}-2 n^{3}\right) \text { là: }\)
A. \(-\infty .\)
B. \(+\infty .\)
C. 0
D. 2
18/11/2021 1 Lượt xem
18/11/2021 1 Lượt xem
Câu 5: Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tâm O . Gọi I là tâm hình bình hành ABCD . Đặt \(\overrightarrow {A C^{\prime}}=\vec{u},\overrightarrow{C A^{\prime}}=\vec{v}, \overrightarrow{B D^{\prime}}=\vec{x}, \overline{D B^{\prime}}=\bar{y}\) . Trong các đẳng thức sau, đẳng thức nào đúng?
A. \(2 \overrightarrow{O I}=-\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)
B. \(2 \overrightarrow{O I}=-\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)
C. \(2 \overrightarrow{O I}=\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)
D. \(2 \overrightarrow{O I}=\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)
18/11/2021 1 Lượt xem
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 657
- 1
- 30
-
73 người đang thi
- 650
- 0
- 30
-
70 người đang thi
- 646
- 0
- 30
-
42 người đang thi
- 559
- 0
- 30
-
66 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận