Câu hỏi:
Cho dãy số (un) được xác định bởi u1 = 2; \({u_n} = 2{u_{n - 1}} + 3n - 1\). Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng \(a{.2^n} + bn + c\), với a, b, c là các số nguyên, \(n \ge 2\); \(n \in N\). Khi đó tổng a + b + c có giá trị bằng
A. -4
B. 4
C. -3
D. 3
Câu 1: Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).
A. n = 2017
B. n = 2019
C. n = 2020
D. n = 2018
18/11/2021 2 Lượt xem
Câu 2: Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Chọn khẳng định đúng?
A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{B D_{1}},\overrightarrow{B C_{1}} \end{array}\) đồng phẳng.
B. \(\overrightarrow {C D_{1}}, \overrightarrow{A D}, \overrightarrow{A_{1} B_{1}}\)đồng phẳng.
C. \(\overrightarrow{C D_{1}}, \overrightarrow{A D}, \overrightarrow{A_{1} C}\) đồng phẳng.
D. \(\overrightarrow{A B}, \overrightarrow{A D}, \overrightarrow{C_{1} A}\) đồng phẳng.
18/11/2021 2 Lượt xem
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN, SC) bằng:
A. 45o
B. 30o
C. 90o
D. 60o
18/11/2021 1 Lượt xem
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của 2 đường chéo và SA= SC. Các khẳng định sau, khẳng định nào đúng?
A. \(S A \perp(A B C D)\)
B. \(B D \perp(S A C)\)
C. \(A C \perp(S B D)\)
D. \(A B \perp(S A C)\)
18/11/2021 4 Lượt xem
Câu 5: Cho ba vectơ \(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Xét các vectơ \(\vec{x}=2 \vec{a}+\vec{b} ; \vec{y}=\vec{a}-\vec{b}-\vec{c} ; \vec{z}=-3 \vec{b}-2 \vec{c}\).Chọn khẳng định đúng?
A. Ba vectơ \(\vec{x} ; \vec{y} ; \vec{z}\) đồng phẳng.
B. Hai vectơ \(\vec{x} ; \vec{a}\) cùng phương.
C. Hai vectơ \(\vec{x} ; \vec{b}\) cùng phương.
D. Ba vectơ \(\vec{x} ; \vec{y} ; \vec z\)đôi một cùng phương.
18/11/2021 2 Lượt xem
Câu 6: Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
A. m > 2019
B. n < 2018
C. n < 2020
D. n > 2017
18/11/2021 2 Lượt xem

Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 536
- 1
- 30
-
66 người đang thi
- 543
- 0
- 30
-
51 người đang thi
- 545
- 0
- 30
-
44 người đang thi
- 455
- 0
- 30
-
25 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận