Câu hỏi:
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và đáy ABC là tam giác cân ở A. Gọi H là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây đúng?
A. \(H \in SB\)
B. H trùng với trọng tâm tam giác SBC.
C. \(H \in SC\)
D. \(H \in SI\) (I là trung điểm của BC)
Câu 1: \(\text { Giá trị của giới hạn } \lim \left(4+\frac{(-1)^{n}}{n+1}\right)\)
A. 2
B. 3
C. 4
D. 1
18/11/2021 2 Lượt xem
Câu 2: Chọn kết quả đúng trong các kết quả sau của \(\lim\limits _{x \rightarrow+\infty} \sqrt{x^{4}-x^{3}+x^{2}-x}\)
A. \(-\infty\)
B. 1
C. \(+\infty\)
D. 0
18/11/2021 3 Lượt xem
Câu 3: Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
A. m > 2019
B. n < 2018
C. n < 2020
D. n > 2017
18/11/2021 2 Lượt xem
Câu 4: \(\text { Kết quả của giới hạn } \lim \left(5-\frac{n \cos 2 n}{n^{2}+1}\right) \text { bằng: }\)
A. 2
B. 3
C. 4
D. 5
18/11/2021 2 Lượt xem
Câu 5: Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).
A. n = 2017
B. n = 2019
C. n = 2020
D. n = 2018
18/11/2021 2 Lượt xem
Câu 6: Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh a. Gọi M là trung điểm AD. Giá trị \(\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} \) là:
A. \(\frac{1}{2}{a^2}\)
B. a2
C. \(\frac{3}{4}{a^2}\)
D. \(\frac{3}{2}{a^2}\)
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 632
- 1
- 30
-
90 người đang thi
- 624
- 0
- 30
-
23 người đang thi
- 625
- 0
- 30
-
93 người đang thi
- 539
- 0
- 30
-
38 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận