Câu hỏi:

Tìm giá trị cực đại của hàm số \(y = {x^4} - 4{x^2} + 3\)

306 Lượt xem
05/11/2021
3.5 6 Đánh giá

A. \({y_{C{\rm{D}}}} = 3\)

B. \({y_{C{\rm{D}}}} =  - 1\)

C. \({y_{C{\rm{D}}}} =  - 6\)

D. \({y_{C{\rm{D}}}} = 8\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

05/11/2021 6 Lượt xem

Câu 3:

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M\left( { - 10;1} \right)\) và \(M'\left( {3;8} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v \) biến điểm \(M\) thành điểm \(M'\). Khi đó vectơ \(\overrightarrow v \) có tọa độ là

A. \(\overrightarrow v  = \left( {13; - 7} \right)\)

B. \(\overrightarrow v  = \left( { - 13; - 7} \right)\)

C. \(\overrightarrow v  = \left( { - 13;7} \right)\)

D. \(\overrightarrow v  = \left( {13;7} \right)\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 6:

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là

A. \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}.\)

B. \(\frac{{x - 2}}{1} = \frac{{y - 4}}{7} = \frac{{z + 1}}{3}.\)

C. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{7} = \frac{{z - 1}}{3}.\)

D. \(\frac{{x - 2}}{1} = \frac{{y + 2}}{7} = \frac{{z + 5}}{3}.\)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
Thông tin thêm
  • 14 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh