Câu hỏi:
Tìm a để các hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\,x + 2a\,\,{\rm{khi }}\,x < 0}\\ {{x^2} + x + 1\,\,\,{\rm{khi}}\,\,x \ge 0} \end{array}} \right.\) liên tục tại x = 0
A. \(\dfrac12\)
B. \(\dfrac14\)
C. 0
D. 1
Câu 1: Cho hình lăng trụ ABCD.A'B'C'D'. Hình chiếu vuông góc của A' lên (ABC) trùng với trực tâm H của tam giác ABC. Khẳng định nào sau đây không đúng?
A. BB'C'C là hình chữ nhật.
B. \(\left( {AA'H} \right)\; \bot \left( {A'B'C'} \right)\)
C. \(\left( {BB'C'C} \right) \bot \;\left( {{\rm{ }}AA'H} \right)\)
D. \(\left( {AA'B'B} \right) \bot \left( {BB'C'C} \right)\)
18/11/2021 1 Lượt xem
Câu 2: Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh a. Gọi M là trung điểm AD. Giá trị \(\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} \) là:
A. \(\frac{1}{2}{a^2}\)
B. a2
C. \(\frac{3}{4}{a^2}\)
D. \(\frac{3}{2}{a^2}\)
18/11/2021 2 Lượt xem
Câu 3: Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tâm O . Gọi I là tâm hình bình hành ABCD . Đặt \(\overrightarrow {A C^{\prime}}=\vec{u},\overrightarrow{C A^{\prime}}=\vec{v}, \overrightarrow{B D^{\prime}}=\vec{x}, \overline{D B^{\prime}}=\bar{y}\) . Trong các đẳng thức sau, đẳng thức nào đúng?
A. \(2 \overrightarrow{O I}=-\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)
B. \(2 \overrightarrow{O I}=-\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)
C. \(2 \overrightarrow{O I}=\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)
D. \(2 \overrightarrow{O I}=\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)
18/11/2021 1 Lượt xem
Câu 4: Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).
A. n = 2017
B. n = 2019
C. n = 2020
D. n = 2018
18/11/2021 2 Lượt xem
Câu 5: Cho dãy số (an) thỏa mãn a1 = 1 và \({a_n} = 10{a_{n - 1}} - 1\), \(\forall n \ge 2\). Tìm giá trị nhỏ nhất của n để \(\log {a_n} > 100\).
A. 100
B. 101
C. 102
D. 103
18/11/2021 1 Lượt xem
Câu 6: Cho dãy số xác định bởi u1 = 1, \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó u2018 bằng
A. \({u_{2018}} = \frac{{{2^{2016}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)
B. \({u_{2018}} = \frac{{{2^{2018}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)
C. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)
D. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 649
- 1
- 30
-
46 người đang thi
- 645
- 0
- 30
-
51 người đang thi
- 643
- 0
- 30
-
56 người đang thi
- 557
- 0
- 30
-
48 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận