Câu hỏi:
Cho dãy số (an) thỏa mãn a1 = 1 và \({a_n} = 10{a_{n - 1}} - 1\), \(\forall n \ge 2\). Tìm giá trị nhỏ nhất của n để \(\log {a_n} > 100\).
A. 100
B. 101
C. 102
D. 103
Câu 1: Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3 số hạng cuối bằng 24. Tính tổng các số hạng này
A. 105
B. 27
C. 108
D. 111
18/11/2021 1 Lượt xem
Câu 2: Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).
A. n = 2017
B. n = 2019
C. n = 2020
D. n = 2018
18/11/2021 2 Lượt xem
Câu 3: \(\text { Kết quả của giới hạn } \lim \left(n^{2} \sin \frac{n \pi}{5}-2 n^{3}\right) \text { là: }\)
A. \(-\infty .\)
B. \(+\infty .\)
C. 0
D. 2
18/11/2021 1 Lượt xem
Câu 4: Cho cấp số cộng (un) có: u1 = −0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng này là:
A. 1,6
B. 6
C. 0,5
D. 0,6
18/11/2021 1 Lượt xem
Câu 5: Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
A. m > 2019
B. n < 2018
C. n < 2020
D. n > 2017
18/11/2021 2 Lượt xem
Câu 6: Cho hình chóp S.ABC có SA = SB = SC và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {AB} \)?
A. 120o
B. 45o
C. 60o
D. 90o
18/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 450
- 1
- 30
-
23 người đang thi
- 456
- 0
- 30
-
49 người đang thi
- 458
- 0
- 30
-
93 người đang thi
- 383
- 0
- 30
-
51 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận