Câu hỏi:
Cho hai dãy số \(\left(u_{n}\right) \text { và }\left(v_{n}\right) \text { có } u_{n}=\frac{(-1)^{n}}{n^{2}+1} \text { và } v_{n}=\frac{1}{n^{2}+2}\)Khi đó \(\lim \left(u_{n}+v_{n}\right)\) có giá trị bằng:
A. 0
B. 2
C. 3
D. 1
Câu 1: Cho dãy số xác định bởi u1 = 1, \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó u2018 bằng
A. \({u_{2018}} = \frac{{{2^{2016}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)
B. \({u_{2018}} = \frac{{{2^{2018}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)
C. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)
D. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)
18/11/2021 1 Lượt xem
Câu 2: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN, SC) bằng:
A. 45o
B. 30o
C. 90o
D. 60o
18/11/2021 1 Lượt xem
Câu 3: Cho dãy số (an) thỏa mãn a1 = 1 và \({a_n} = 10{a_{n - 1}} - 1\), \(\forall n \ge 2\). Tìm giá trị nhỏ nhất của n để \(\log {a_n} > 100\).
A. 100
B. 101
C. 102
D. 103
18/11/2021 1 Lượt xem
Câu 4: Cho hình lăng trụ ABCD.A'B'C'D'. Hình chiếu vuông góc của A' lên (ABC) trùng với trực tâm H của tam giác ABC. Khẳng định nào sau đây không đúng?
A. BB'C'C là hình chữ nhật.
B. \(\left( {AA'H} \right)\; \bot \left( {A'B'C'} \right)\)
C. \(\left( {BB'C'C} \right) \bot \;\left( {{\rm{ }}AA'H} \right)\)
D. \(\left( {AA'B'B} \right) \bot \left( {BB'C'C} \right)\)
18/11/2021 1 Lượt xem
Câu 5: Cho cấp số cộng (un) có u1 = 4. Tìm giá trị nhỏ nhất của \({u_1}{u_2} + {u_2}{u_3} + {u_3}{u_1}\)?
A. -20
B. -6
C. -8
D. -24
18/11/2021 3 Lượt xem
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 644
- 1
- 30
-
13 người đang thi
- 638
- 0
- 30
-
72 người đang thi
- 637
- 0
- 30
-
12 người đang thi
- 551
- 0
- 30
-
18 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận