Câu hỏi:
Tìm a để các hàm số \(f(x) = \left\{ \begin{array}{l} \frac{{\sqrt {3x + 1} - 2}}{{{x^2} - 1}}{\rm{ \ khi \ }}x > 1\\ \frac{{a({x^2} - 2)}}{{x - 3}}{\rm{ \ khi \ }}x \le 1 \end{array} \right.\) liên tục tại x = 1
A. \(\frac12\)
B. \(\frac14\)
C. \(\frac34\)
D. 1
Câu 1: Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng un = n2+1
A. d = Ø
B. d = 3
C. d = -3
D. d = 1
18/11/2021 0 Lượt xem
Câu 2: Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3 số hạng cuối bằng 24. Tính tổng các số hạng này
A. 105
B. 27
C. 108
D. 111
18/11/2021 1 Lượt xem
Câu 3: Cho cấp số cộng (un) có u1 = 4. Tìm giá trị nhỏ nhất của \({u_1}{u_2} + {u_2}{u_3} + {u_3}{u_1}\)?
A. -20
B. -6
C. -8
D. -24
18/11/2021 3 Lượt xem
18/11/2021 2 Lượt xem
Câu 5: Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).
A. n = 2017
B. n = 2019
C. n = 2020
D. n = 2018
18/11/2021 2 Lượt xem
Câu 6: \(\text { Giá trị của giới hạn } \lim \left(4+\frac{(-1)^{n}}{n+1}\right)\)
A. 2
B. 3
C. 4
D. 1
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 620
- 1
- 30
-
86 người đang thi
- 605
- 0
- 30
-
72 người đang thi
- 610
- 0
- 30
-
18 người đang thi
- 526
- 0
- 30
-
79 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận