Câu hỏi:
Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng \({u_n} = \frac{2}{n}\)
A. d = Ø
B. \(d = \frac{1}{2}\)
C. d = -3
D. d = 1
Câu 1: Cho dãy số xác định bởi u1 = 1, \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó u2018 bằng
A. \({u_{2018}} = \frac{{{2^{2016}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)
B. \({u_{2018}} = \frac{{{2^{2018}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)
C. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)
D. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)
18/11/2021 1 Lượt xem
Câu 2: Tìm giới hạn \(B=\lim\limits _{x \rightarrow-\infty}\left(x-\sqrt{x^{2}+x+1}\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. 0
D. 1
18/11/2021 1 Lượt xem
18/11/2021 1 Lượt xem
Câu 4: Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
A. m > 2019
B. n < 2018
C. n < 2020
D. n > 2017
18/11/2021 2 Lượt xem
18/11/2021 2 Lượt xem
Câu 6: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN, SC) bằng:
A. 45o
B. 30o
C. 90o
D. 60o
18/11/2021 1 Lượt xem

Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 557
- 1
- 30
-
59 người đang thi
- 558
- 0
- 30
-
81 người đang thi
- 558
- 0
- 30
-
69 người đang thi
- 467
- 0
- 30
-
82 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận