Câu hỏi:

Cho tứ diện ABCD. Chứng minh rằng nếu \(\overrightarrow {AB} .\overrightarrow {AC} = .\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} \) thì \(AB \bot CD\), \(AC \bot BD\), \(AD \bot BC\). Điều ngược lại đúng không?

Sau đây là lời giải:

Bước 1: \(\overrightarrow {AB} .\overrightarrow {AC} = .\overrightarrow {AC} .\overrightarrow {AD} \Leftrightarrow \overrightarrow {AC} .(\overrightarrow {AB} - \overrightarrow {AD} ) = 0 \Leftrightarrow \overrightarrow {AC} .\overrightarrow {DB} = 0 \Leftrightarrow AC \bot BD\)

Bước 2: Chứng minh tương tự, từ \(\overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} \) ta được \(AD \bot BC\) và \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AD} .\overrightarrow {AB} \) ta được \(AB \bot CD\).

Bước 3: Ngược lại đúng, vì quá trình chứng minh ở bước 1 và 2 là quá trình biến đổi tương đương.

Bài giải trên đúng hay sai? Nếu sai thì sai ở đâu?

278 Lượt xem
18/11/2021
3.8 19 Đánh giá

A. Sai ở bước 3.

B. Đúng

C. Sai ở bước 2.

D. Sai ở bước 1.

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tâm O . Gọi I là tâm hình bình hành ABCD . Đặt \(\overrightarrow {A C^{\prime}}=\vec{u},\overrightarrow{C A^{\prime}}=\vec{v}, \overrightarrow{B D^{\prime}}=\vec{x}, \overline{D B^{\prime}}=\bar{y}\) . Trong các đẳng thức sau, đẳng thức nào đúng?

A. \(2 \overrightarrow{O I}=-\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)

B. \(2 \overrightarrow{O I}=-\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)

C. \(2 \overrightarrow{O I}=\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)

D. \(2 \overrightarrow{O I}=\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3:

Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Chọn khẳng định đúng? 

A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{B D_{1}},\overrightarrow{B C_{1}} \end{array}\) đồng phẳng.

B. \(\overrightarrow {C D_{1}}, \overrightarrow{A D}, \overrightarrow{A_{1} B_{1}}\)đồng phẳng.

C. \(\overrightarrow{C D_{1}}, \overrightarrow{A D}, \overrightarrow{A_{1} C}\) đồng phẳng.

D. \(\overrightarrow{A B}, \overrightarrow{A D}, \overrightarrow{C_{1} A}\) đồng phẳng.

Xem đáp án

18/11/2021 2 Lượt xem

Câu 4:

Cho hình lăng trụ ABCD.A'B'C'D'. Hình chiếu vuông góc của A' lên (ABC) trùng với trực tâm H của tam giác ABC. Khẳng định nào sau đây không đúng?

A. BB'C'C là hình chữ nhật.

B. \(\left( {AA'H} \right)\; \bot \left( {A'B'C'} \right)\)

C. \(\left( {BB'C'C} \right) \bot \;\left( {{\rm{ }}AA'H} \right)\)

D. \(\left( {AA'B'B} \right) \bot \left( {BB'C'C} \right)\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Đặng Trần Côn
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh