Câu hỏi:

Nếu 0 < a < 1 thì bất đẳng thức nào sau đây đúng?

308 Lượt xem
18/11/2021
4.0 15 Đánh giá

A. \(\frac{1}{a} > \sqrt a .\)

B. \(a > \frac{1}{a}.\)

C. \(a > \sqrt a .\)

D. \({a^3} > {a^2}.\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Phương trình đường thẳng cắt hai trục tọa độ tại A(-2;0) và B(0;3) là:

A. 2x - 3y + 4 = 0

B. 3x-2y + 6 = 0

C. 3x-2y - 6 = 0

D. 2x-3y - 4 = 0

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3:

Đường trung trực của đoạn AB với A(1;-4) và B(5;2) có phương trình là:

A. 2x + 3y - 3 = 0.

B. 3x + 2y + 1 = 0.

C. 3x - y + 4 = 0.

D. x + y - 1 = 0.

Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Tập nghiệm của bất phương trình \({x^3} + 3{x^2} - 6x - 8 \ge 0\) là

A. \(x \in \left[ { - \,4; - 1} \right] \cup \left[ {2; + \infty } \right).\)

B. \(x \in \left( { - \,4; - \,1} \right) \cup \left( {2; + \,\infty } \right).\)

C. \(x \in \left[ { - \,1; + \infty } \right).\)

D. \(x \in \left( { - \infty ; - \,4} \right] \cup \left[ { - \,1;2} \right].\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Cho x, y là các số thực dương và thỏa mãn \(x + y \ge 3.\) Tìm giá trị nhỏ nhất \({F_{\min }}\) của biểu thức \(F = x + y + \frac{1}{{2x}} + \frac{2}{y}.\)

A. \({F_{\min }} = 4\frac{1}{2}.\)

B. \({F_{\min }} = 3\sqrt 2 .\)

C. \({F_{\min }} = 4\frac{1}{3}.\)

D. \({F_{\min }} = 4\frac{2}{3}.\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 10 năm 2021 của Trường THPT Nguyễn Hữu Thọ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh