Câu hỏi:
Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?
Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:
A(n) : “nếu a và b là những số nguyên dương mà max{a,b} = n thì a = b”
Chứng minh :
Bước 1: A(1):”nếu a,b là những số nguyên dương mà max{a,b} = 1 thì a = b”
Mệnh đề A(1) đúng vì max{a,b} = 1 và a,b là những số nguyên dương thì a = b =1.
Bước 2: giả sử A(k) là mệnh đề đúng vơi k≥1
Bước 3: xét max{a,b} = k+1 ⇒ max{a-1,b-1} = k+ 1-1 = k
Do a(k) là mệnh đề đúng nên a- 1= b-1 ⇒ a = b ⇒ A(k+1) đúng.
Vậy A(n) đúng với mọi n ∈N*
A. Bước 1
B. Bước 2
C. Bước 3
D. Không có bước nào sai
Câu 1: Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
A. \( +\infty \)
B. \( -\infty \)
C. \(\frac{4}{3}\)
D. 0
18/11/2021 2 Lượt xem
Câu 2: Trong các mệnh đề sau, mệnh đề nào đúng?
A. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau.
B. Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.
D. Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau
18/11/2021 3 Lượt xem
Câu 3: Tìm giới hạn \(C = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} + x + 1} - 2x} \right)\)
A. \( + \infty \)
B. \( - \infty \)
C. \(\frac{1}{2}\)
D. \(\frac{1}{4}\)
18/11/2021 2 Lượt xem
Câu 4: Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
A. \({u_n} = 2017n + 2018\)
B. \({u_n} = {\left( { - 1} \right)^n}{\left( {\frac{{2017}}{{2018}}} \right)^n}\)
C. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \frac{{{u_n}}}{{2018}},\,\,\,n = 1,\,2,\,3,\,... \end{array} \right.\)
D. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = 2017{u_n} + 2018 \end{array} \right.\)
18/11/2021 5 Lượt xem
Câu 5: Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD). SC tạo với mặt phẳng (SAB) một góc 30o. Gọi M là một điểm trên cạnh AB sao cho \(BM = 3MA.\) Khoảng cách từ điểm A đến mặt phẳng (SCM) là
A. \(\frac{{\sqrt {34} a}}{{51}}\)
B. \(\frac{{2\sqrt {34} a}}{{51}}\)
C. \(\frac{{3\sqrt {34} a}}{{51}}\)
D. \(\frac{{4\sqrt {34} a}}{{51}}\)
18/11/2021 1 Lượt xem
Câu 6: Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính \(S = \frac{1}{{u_1^{}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\)
A. S = 123
B. \(S = \frac{4}{{23}}\)
C. \(S = \frac{9}{{246}}\)
D. \(S = \frac{{49}}{{246}}\)
18/11/2021 2 Lượt xem

Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phan Văn Trị
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 612
- 1
- 30
-
17 người đang thi
- 598
- 0
- 30
-
17 người đang thi
- 602
- 0
- 30
-
96 người đang thi
- 518
- 0
- 30
-
86 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận