Câu hỏi:
Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?
Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:
A(n) : “nếu a và b là những số nguyên dương mà max{a,b} = n thì a = b”
Chứng minh :
Bước 1: A(1):”nếu a,b là những số nguyên dương mà max{a,b} = 1 thì a = b”
Mệnh đề A(1) đúng vì max{a,b} = 1 và a,b là những số nguyên dương thì a = b =1.
Bước 2: giả sử A(k) là mệnh đề đúng vơi k≥1
Bước 3: xét max{a,b} = k+1 ⇒ max{a-1,b-1} = k+ 1-1 = k
Do a(k) là mệnh đề đúng nên a- 1= b-1 ⇒ a = b ⇒ A(k+1) đúng.
Vậy A(n) đúng với mọi n ∈N*
A. Bước 1
B. Bước 2
C. Bước 3
D. Không có bước nào sai
Câu 1: Giá trị của \(F = \lim \frac{{{{\left( {n - 2} \right)}^7}{{\left( {2n + 1} \right)}^3}}}{{{{\left( {{n^2} + 2} \right)}^5}}}\) bằng:
A. \( + \infty \)
B. \( - \infty \)
C. 8
D. 7
18/11/2021 2 Lượt xem
Câu 2: Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
A. \({u_n} = 2017n + 2018\)
B. \({u_n} = {\left( { - 1} \right)^n}{\left( {\frac{{2017}}{{2018}}} \right)^n}\)
C. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \frac{{{u_n}}}{{2018}},\,\,\,n = 1,\,2,\,3,\,... \end{array} \right.\)
D. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = 2017{u_n} + 2018 \end{array} \right.\)
18/11/2021 5 Lượt xem
Câu 3: Cho cấp số cộng \(( u_n)\) thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính số hạng thứ 100 của cấp số cộng.
A. \(u_{100}=-243\)
B. \(u_{100}=-295\)
C. \(u_{100}=-231\)
D. \(u_{100}=-294\)
18/11/2021 1 Lượt xem
Câu 4: Cho hai mặt phẳng (P) và (Q) , a là một đường thẳng nằm trên (P). Mệnh đề nào sau đây sai?
A. Nếu \(a / / b \text { với } b=(P) \cap(O) \text { thì a } / /(O)\)
B. Nếu \((P) \perp(Q) \text { thì } a \perp(Q)\)
C. \(Nếu \,a \text { cắt }(Q) \text { thì }(P) \text { cắt }(Q)\)
D. Nếu \((P) / /(Q) \text { thì } a / /(Q)\)
18/11/2021 1 Lượt xem
Câu 5: Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD). SC tạo với mặt phẳng (SAB) một góc 30o. Gọi M là một điểm trên cạnh AB sao cho \(BM = 3MA.\) Khoảng cách từ điểm A đến mặt phẳng (SCM) là
A. \(\frac{{\sqrt {34} a}}{{51}}\)
B. \(\frac{{2\sqrt {34} a}}{{51}}\)
C. \(\frac{{3\sqrt {34} a}}{{51}}\)
D. \(\frac{{4\sqrt {34} a}}{{51}}\)
18/11/2021 1 Lượt xem
Câu 6: Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
A. \( +\infty \)
B. \( -\infty \)
C. \(\frac{4}{3}\)
D. 0
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi giữa HK2 môn Toán 11 năm 2021 của Trường THPT Phan Văn Trị
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 620
- 1
- 30
-
90 người đang thi
- 605
- 0
- 30
-
78 người đang thi
- 610
- 0
- 30
-
82 người đang thi
- 526
- 0
- 30
-
66 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận