Câu hỏi:

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } ( - {x^3} + 2{x^2} - x + 1)\) bằng

312 Lượt xem
18/11/2021
3.7 18 Đánh giá

A. 1

B. \( - \infty \).

C. -1

D. \( + \infty \).

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) là

A. \(y' =  - \frac{3}{{{{\left( {x + 1} \right)}^2}}}\)

B. \(y' =  - \frac{3}{{{{\left( {x - 1} \right)}^2}}}\)

C. \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\).

D. \(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}}\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 3:

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2020\). Tìm tập nghiệm \(S\) của bất phương trình \(f'\left( x \right) \le 0\).

A. \(S = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\)

B. \(S = \left[ {2; + \infty } \right)\)

C. \(S = \left( {0;2} \right)\)

D. \(S = \left[ {0;2} \right]\)

Xem đáp án

18/11/2021 0 Lượt xem

Câu 4:

Đạo hàm của hàm số \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\) là

A. \(y' = \frac{{2x + 2}}{{{{\left( {x + 1} \right)}^2}}}\)

B. y' = 2x + 2

C. \(y' = \frac{{{x^2} + 2x}}{{x + 1}}\)

D. \(y' = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng?

A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC)

B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC)

C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB)

D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6:

Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số giảm là

A. \({u_n} = \sin n\)

B. \({u_n} = \sqrt n  - \sqrt {n - 1} \)

C. \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right)\)

D. \({u_n} = \frac{{{n^2} + 1}}{n}\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh