Câu hỏi:

Giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1}  - 1}}{x}\) bằng

328 Lượt xem
18/11/2021
3.9 17 Đánh giá

A. 2

B. 3

C. \(\frac{1}{2}\).

D. -2

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

18/11/2021 1 Lượt xem

Câu 4:

Trong các giới hạn sau đây, giới hạn nào bằng 2?

A. \(\lim \left( {2{n^2} + n + 3} \right)\)

B. \(\lim \frac{{2{n^5} - {n^4}}}{{ - 3{n^3} + {n^5}}}\)

C. \(\lim \frac{{2{n^2} + 1}}{{{n^4} + 3}}\)

D. \(\lim \frac{{{n^3} - 1}}{{ - 2{n^2} + 4{n^3}}}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5:

Đạo hàm của hàm số \(y = \sin ({x^2} + 1)\) bằng:

A. \(y' = 2x\sin ({x^2} + 1)\).

B. \(y' = 2x\cos ({x^2} + 1)\).

C. \(y' = 2\cos ({x^2} + 1)\) .

D. \(y' = ({x^2} + 1)\cos (2x)\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 6:

Cho các hàm số \(u = u(x),v = v(x)\). Trong các công thức sau, công thức nào sai?

A. \(\left( {u.v} \right)' = u'.v - u.v'\)

B. \(\left( {\frac{u}{v}} \right)' = \frac{{u'.v - u.v'}}{{{v^2}}},\)\(v = v(x) \ne 0\)

C. \(\left( {u + v} \right)' = u' + v'\)

D. \(\left( {u - v} \right)' = u' - v'\)

Xem đáp án

18/11/2021 1 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh