Câu hỏi:
Đồ thị hàm số nào dưới đây có tâm đối xứng là điểm I(1;-2)?
A. \(y = \frac{{2x - 3}}{{2x + 4}}.\)
B. \(y = 2{x^3} - 6{x^2} + x + 1.\)
C. \(y = - 2{x^3} + 6{x^2} + x - 1.\)
D. \(y = \frac{{2 - 2x}}{{1 - x}}.\)
Câu 1: Cho hình lăng trụ đều ABC.A'B'C', biết góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 45o, diện tích tam giác A'BC bằng \({a^2}\sqrt 6 \). Tính diện tích xung quanh của hình trụ ngoại tiếp hình lăng trụ ABC.A'B'C'.
A. \(\frac{{4\pi {a^2}\sqrt 3 }}{3}\)
B. \(2\pi {a^2}\)
C. \(4\pi {a^2}\)
D. \(\frac{{8\pi {a^2}\sqrt 3 }}{3}\)
05/11/2021 1 Lượt xem
Câu 2: Cho hàm số y = f(x) là hàm số chẵn, liên tục trên R và số thực a dương thỏa \(\int\limits_0^a {f\left( x \right){\rm{d}}x = 3} \). Tính \(I = \int\limits_{ - a}^a {\left( {f\left( x \right) - x} \right){\rm{d}}x} \).
A. I = 3
B. I = 6
C. I = 0
D. I = 9
05/11/2021 1 Lượt xem
Câu 3: Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; \(AB = BC = \frac{1}{2}AD = a\). Biết SA vuông góc với mặt phẳng đáy, \(SA = a\sqrt 2 \). Tính theo a khoảng cách d từ B đến mặt phẳng (SCD).
A. \(d = \frac{1}{2}a.\)
B. \(d = \frac{1}{4}a.\)
C. d = a
D. \(d = \frac{{\sqrt 2 }}{2}a.\)
05/11/2021 3 Lượt xem
Câu 4: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( \alpha \right):x - 2y + 3z + 2018 = 0\) có một véctơ pháp tuyến là
A. \(\overrightarrow n = \left( { - 1; - 2;3} \right)\)
B. \(\overrightarrow n = \left( {1; - 2;3} \right)\)
C. \(\overrightarrow n = \left( {1;2;3} \right)\)
D. \(\overrightarrow n = \left( { - 1;2;3} \right)\)
05/11/2021 1 Lượt xem
Câu 5: Trong không gian hệ tọa độ Oxyz, cho điểm A(1;-1;2). Phương trình mặt phẳng (Q) đi qua các hình chiếu của điểm A trên các trục tọa độ là
A. \(\left( Q \right):x - y + 2z - 2 = 0\)
B. \(\left( Q \right):2x - 2y + z - 2 = 0\)
C. \(\left( Q \right):\frac{x}{{ - 1}} + \frac{y}{1} + \frac{z}{{ - 2}} = 1\)
D. \(\left( Q \right):x - y + 2z + 6 = 0\)
05/11/2021 2 Lượt xem
Câu 6: Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại B, AB = BC = a, \(AA' = a\sqrt 2 \) , M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM và B'C.
A. \(\frac{{a\sqrt 7 }}{7}\)
B. \(\frac{{a\sqrt 3 }}{2}\)
C. \(\frac{{2a}}{{\sqrt 5 }}\)
D. \(a\sqrt 3 \)
05/11/2021 2 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quang Khải
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
86 người đang thi
- 1.1K
- 122
- 50
-
21 người đang thi
- 914
- 75
- 50
-
49 người đang thi
- 727
- 35
- 50
-
38 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận