Câu hỏi: Diện tích hình phẳng giới hạn bởi các đường \(y = x^2 - x , y = 2x - 2 , x = 0 , x = 3\) được tính bởi công thức:

365 Lượt xem
18/11/2021
3.3 18 Đánh giá

A. \( S = \left| {\mathop \smallint \limits_0^3 \left( {{x^2} - 3x + 2} \right)dx} \right|\)

B. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} - 3x + 2} \right|dx\)

C. \( S = \mathop \smallint \limits_0^3 \left| {{x^2} - 3x + 2} \right|dx\)

D. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} + x - 2} \right|dx\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Trong không gian Oxyz , cho điểm A(1;2;-1) và mặt phẳng \((P): x-y+2 z-3=0\) . Đường thẳng d đi qua A và vuông góc với mặt phẳng (P) có phương trình là

A. \(d: \frac{x-1}{1}=\frac{2-y}{1}=\frac{z+1}{2}\)

B. \(d: \frac{x+1}{1}=\frac{y+2}{-1}=\frac{z-1}{2}\)

C. \(d: \frac{x-1}{1}=\frac{y-2}{1}=\frac{z+1}{2}\)

D. \(d: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z+1}{2}\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 5: Xét tích phân \(I=\int_{0}^{\pi / 3} \frac{\sin 2 x}{1+\cos x} d x\) . Thực hiện phép đổi biến \(t=\cos x\), ta có thể đưa I về dạng nào sau đây?

A. \(I=-\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)

B. \(I=\int_{0}^{\pi / 4} \frac{2 t}{1+t} d t\)

C. \(I=-\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)

D. \(I=\int_{\frac{1}{2}}^{1} \frac{2 t}{1+t} d t\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Hoàng Văn Thụ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh