Câu hỏi: Cho \(\vec a=(1;0;-3), \vec b=(2;1;2)\). Khi đó \(|[\vec a, \vec b]|\) có giá trị  là:

302 Lượt xem
18/11/2021
3.7 13 Đánh giá

A. 8

B. 3

C. \(\sqrt{74}\)

D. 4

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2: Cho tứ diện ABCD biết \(A(0;-1;3);B(2;1;0),C(-1;3;3);D(1;-1;-1)\). Tính chiều cao AH của tứ diện.

A. \(\sqrt{29}\over2\)

B. \(1\over\sqrt{29}\)

C. \(\sqrt{29}\)

D. \(14\over\sqrt{29}\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 5: Diện tích hình phẳng giới hạn bởi các đường \(y = x^2 - x , y = 2x - 2 , x = 0 , x = 3\) được tính bởi công thức:

A. \( S = \left| {\mathop \smallint \limits_0^3 \left( {{x^2} - 3x + 2} \right)dx} \right|\)

B. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} - 3x + 2} \right|dx\)

C. \( S = \mathop \smallint \limits_0^3 \left| {{x^2} - 3x + 2} \right|dx\)

D. \( S = \mathop \smallint \limits_1^2 \left| {{x^2} + x - 2} \right|dx\)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\text{ }\!\!\Delta\!\!\text{ }:\frac{x}{1}=\frac{y+3}{1}=\frac{z}{2}\). Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt{2}\) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I.

A. \(I\left( 1;-2;2 \right);\text{ }I\left( 5;2;10 \right)\)

B. \(I\left( 1;-2;2 \right);\text{ }I\left( 0;-3;0 \right)\)

C. \(I\left( 5;2;10 \right);\text{ }I\left( 0;-3;0 \right)\)

D. \(I\left( 1;-2;2 \right);\text{ }I\left( -1;2;-2 \right)\)

Xem đáp án

18/11/2021 2 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Hoàng Văn Thụ
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh