Câu hỏi:
Cho số phức \(z = x + yi\left( {x,y \in R} \right)\) có phần thực khác 0. Biết số phức \(w = i{z^2} + 2\overline z \) là số thuần ảo. Tập hợp các điểm biểu diễn của z là một đường thẳng đi qua điểm nào dưới đây?
A. M(0;1)
B. N(2;-1)
C. P(1;3)
D. Q(1;1)
Câu 1: Cho hình hộp có đáy là hình vuông cạnh bằng a và chiều cao 3a. Thể tích của hình hộp đã cho bằng
A. a3
B. 3a3
C. 9a3
D. \(\frac{1}{3}{a^3}\)
05/11/2021 7 Lượt xem
05/11/2021 8 Lượt xem
05/11/2021 11 Lượt xem
Câu 4: Trong không gian Oxyz, tọa độ tâm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y - 6 = 0\) là
A. (2;4;0)
B. (1;2;0)
C. (1;2;3)
D. (2;4;6)
05/11/2021 8 Lượt xem
Câu 5: Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):2x - y + z - 3 = 0\). Gọi (S) là mặt cầu có tâm I thuộc \(\Delta\) và tiếp xúc với (P) tại điểm H(1;-1;0). Phương trình của (S) là
A. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\)
B. \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\)
C. \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\)
D. \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\)
05/11/2021 7 Lượt xem
Câu 6: Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1;2;3) trên mặt phẳng (Oyz) có tọa độ là
A. (0;2;3)
B. (1;0;3)
C. (1;0;0)
D. (0;2;0)
05/11/2021 7 Lượt xem
- 38 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
81 người đang thi
- 1.3K
- 122
- 50
-
31 người đang thi
- 1.2K
- 75
- 50
-
20 người đang thi
- 983
- 35
- 50
-
32 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận