Câu hỏi:
Cho hình chóp tứ giác \(S.ABCD\) có SA vuông góc với mặt phẳng (ABCD). Đáy \(ABCD\) là hình chữ nhật, \(SA = AB = a,BC = a\sqrt 2 \). Gọi \(\alpha \) là góc giữa hai đường thẳng \(AD\) và \(SC\). Tính số đo góc \(\alpha \).
A. \(\alpha = {135^0}\)
B. \(\alpha = {45^0}\)
C. \(\alpha = {90^0}\)
D. \(\alpha = {60^0}\)
Câu 1: Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng?
A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC)
B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC)
C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB)
D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK)
18/11/2021 2 Lượt xem
Câu 2: Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 9}}{{x - 3}}\) bằng
A. 5
B. 6
C. 8
D. 7
18/11/2021 0 Lượt xem
Câu 3: Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \)
B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \)
C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \)
D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).
18/11/2021 2 Lượt xem
Câu 4: Đạo hàm của hàm số \(y = \sin ({x^2} + 1)\) bằng:
A. \(y' = 2x\sin ({x^2} + 1)\).
B. \(y' = 2x\cos ({x^2} + 1)\).
C. \(y' = 2\cos ({x^2} + 1)\) .
D. \(y' = ({x^2} + 1)\cos (2x)\).
18/11/2021 2 Lượt xem
Câu 5: Trong bốn giới hạn sau đây, giới hạn nào là \( - \infty \)?
A. \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 4}}{{x - 1}}\)
B. \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 4}}{{x - 1}}\)
C. \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{ - x + 4}}{{x - 1}}\)
D. \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - x + 4}}{{x - 1}}\)
18/11/2021 0 Lượt xem
Câu 6: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a. Tính cosin của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\).
A. \(\frac{{\sqrt {210} }}{{15}}\)
B. \(\frac{1}{3}\)
C. \(\frac{{\sqrt {15} }}{{15}}\)
D. \(\frac{1}{4}\)
18/11/2021 2 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 11 năm 2021 của Trường THPT Trần Văn Giàu
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 11
- 661
- 1
- 30
-
20 người đang thi
- 655
- 0
- 30
-
65 người đang thi
- 652
- 0
- 30
-
22 người đang thi
- 568
- 0
- 30
-
49 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận