Câu hỏi:
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh \(a\sqrt2\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp đã cho
A. \(a^3\sqrt6\over3\)
B. \(a^3\sqrt6\over6\)
C. \(a^3\sqrt3\over2\)
D. \(2a^3\sqrt6\over3\)
Câu 1: Cho hàm số \(y={\sqrt{x-2}\over(x^2-4)(2x-7)}\). Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
A. 3
B. 2
C. 5
D. 4
05/11/2021 0 Lượt xem
Câu 2: Cho hàm số \(f'(x)\) có bảng biến thiên sau

Giá trị cực đại của hàm số đã cho bằng

A. \(0\)
B. \(2\)
C. \(-1\)
D. \(+\infty\)
05/11/2021 0 Lượt xem
Câu 3: Cho hàm số y = f (x) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f (1- f (x)) = 2\) là:


A. 2
B. 3
C. 5
D. 4
05/11/2021 0 Lượt xem
Câu 4: Họ nguyên hàm \(\int {\frac{{{x^2} + 2x + 3}}{{x + 1}}dx} \) bằng
A. \(\frac{{{x^2}}}{2} + x - 2\ln \left| {x + 1} \right| + C\)
B. \(\frac{{{x^2}}}{2} + x - \frac{1}{(x+1)^2} + C\)
C. \(\frac{{{x^2}}}{2} + x + 2\ln \left| {x + 1} \right| + C\)
D. \(x^2 + x + 2\ln \left| {x + 1} \right| + C\)
05/11/2021 0 Lượt xem
Câu 5: Tập hợp tất cả các giá trị của tham số m để hàm số \(v=\frac{mx-4}{x-m}\) đồng biến trên khoảng \((-1;+\infty)\) là
A. \((-2;1]\)
B. \((-2;1)\)
C. \((-2;2)\)
D. \((-2;-1]\)
05/11/2021 0 Lượt xem
Câu 6: Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình chữ nhật, \(AB=a, AD=a\sqrt2,\,SA\bot(ABCD) \,\mathrm{và}\,SA=a\), (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng (SBD) bằng:


A. \(\frac{a\sqrt{21}}{7}\)
B. \(\frac{a\sqrt{10}}{5}\)
C. \(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{5}\)
05/11/2021 0 Lượt xem

Câu hỏi trong đề: Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020 của Trường THPT Chuyên Khoa Học Tự Nhiên lần 3
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 285
- 50
-
45 người đang thi
- 1.2K
- 122
- 50
-
28 người đang thi
- 1.1K
- 75
- 50
-
95 người đang thi
- 894
- 35
- 50
-
42 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận