Câu hỏi:
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:
6184b972b65c9.png)
Phương trình f(x) = 4 có bao nhiêu nghiệm thực?
A. 4
B. 2
C. 3
D. 0
Câu 1: Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^{4x}} \le {\left( {\frac{3}{2}} \right)^{2 - x}}\) là:
A. \(\left( { - \infty ;\, - \frac{2}{3}} \right]\)
B. \(\left[ { - \frac{2}{3};\, + \infty } \right)\)
C. \(\left( { - \infty ;\,\frac{2}{5}} \right]\)
D. \(\left( {\frac{2}{3};\, + \infty } \right)\)
05/11/2021 5 Lượt xem
Câu 2: Cho hàm số \(f(x) = \frac{{2 - ax}}{{bx - c}}\left( {a,b,c \in R,b \ne 0} \right)\) có bảng biến thiên như sau:
6184b973466a7.png)
Tổng các số \({\left( {a + b + c} \right)^2}\) thuộc khoảng nào sau đây?
6184b973466a7.png)
A. (1;2)
B. (2;3)
C. \(\left( {0;\frac{4}{9}} \right)\)
D. \(\left( {\frac{4}{9};1} \right)\)
05/11/2021 6 Lượt xem
Câu 3: Trong không gian Oxyz cho mặt phẳng \(\left( P \right):2x - y + 6 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A. \({\vec n_3} = (2;1;0)\)
B. \({\vec n_1} = (2; - 1;6)\)
C. \({\vec n_2} = (2; - 1;0)\)
D. \({\vec n_4} = (2;1;6)\)
05/11/2021 6 Lượt xem
Câu 4: Viết đường thẳng \(\Delta\) nằm trong mặt phẳng \((P):2x - y - z + 4 = 0\) và vuông góc với đường thẳng \(d:\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z + 2}}{{ - 3}} \cdot \) Biết \(\Delta\) đi qua điểm M(0;1;3)
A. \(\Delta :\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{1}\)
B. \(\Delta :\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z - 3}}{1}\)
C. \(\Delta :\frac{x}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 3}}{1}\)
D. \(\Delta :\frac{x}{1} = \frac{{y + 1}}{1} = \frac{{z + 3}}{1}\)
05/11/2021 7 Lượt xem
Câu 5: Tìm họ nguyên hàm của hàm số f(x) = sin(2020ax+1) ( Với a là tham số khác 0)
A. \(\int {\sin (2020ax + 1)dx = \frac{1}{{2020}}\cos 2020x + C} \)
B. \(\int {\sin (2020ax + 1)dx = \cos 2020ax + C} \)
C. \(\int {\sin (2020ax + 1)dx = - \frac{1}{{2020a}}\cos (2020ax + 1) + C} \)
D. \(\int {\sin (2020ax + 1)dx} = \cos 2020x + C\)
05/11/2021 8 Lượt xem
Câu 6: Cho điểm A(1;2;3) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{3} \cdot \) Viết phương trình đường thẳng \(\Delta\) đi qua A vuông góc và cắt d.
A. \(\frac{{x - 1}}{6} = \frac{{y - 2}}{9} = \frac{{z - 3}}{4}\)
B. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{ - 19}} = \frac{{z - 3}}{{13}}\)
C. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{19}} = \frac{{z - 3}}{{ - 13}}\)
D. \(\frac{{x + 1}}{{23}} = \frac{{y + 2}}{{19}} = \frac{{z + 3}}{{13}}\)
05/11/2021 6 Lượt xem
- 286 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.3K
- 122
- 50
-
88 người đang thi
- 1.2K
- 75
- 50
-
64 người đang thi
- 995
- 35
- 50
-
29 người đang thi
- 882
- 31
- 50
-
25 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận