Câu hỏi:
Cho hàm số f(x) liên tục trên R thỏa mãn \({x^2}f\left( {1 - x} \right) + 2f\left( {\frac{{2x - 2}}{x}} \right) = \frac{{ - {x^4} + {x^3} + 4x - 4}}{x},\forall x \ne 0,x \ne 1\). Khi đó \(\int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}} x\) có giá trị là
A. 0
B. 1
C. 0,5
D. 1,5
Câu 1: Phương trình \({2020^{4x - 8}} = 1\) có nghiệm là
A. \(x = \frac{7}{4}\)
B. x = -2
C. \(x = \frac{9}{4}\)
D. x = 2
05/11/2021 8 Lượt xem
Câu 2: Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \sin x - 6{x^2}\) là
A. \( - \cos x - 2{x^3} + C\)
B. \(\cos x - 2{x^3} + C\)
C. \( - \cos x - 18{x^3} + C\)
D. \(\cos x - 18{x^3} + C\)
05/11/2021 8 Lượt xem
Câu 3: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình dưới đây?
A. \(y = {x^2} - 2x - 1\)
B. \(y = {x^3} - 2x - 1\)
C. \(y = {x^4} + 2{x^2} - 1\)
D. \(y = - {x^3} + 2x - 1\)
05/11/2021 9 Lượt xem
05/11/2021 8 Lượt xem
Câu 5: Gọi \(\overline z \) là số phức liên hợp của số phức z = - 3 + 4i. Tìm phần thực và phần ảo của số phức \(\overline z \).
A. Số phức \(\overline z \) có phần thực bằng -3 và phần ảo bằng 4.
B. Số phức \(\overline z \) có phần thực bằng 3 và phần ảo bằng 4.
C. Số phức \(\overline z \) có phần thực bằng -3 và phần ảo bằng -4.
D. Số phức \(\overline z \) có phần thực bằng 3 và phần ảo bằng -4.
05/11/2021 7 Lượt xem
Câu 6: Cho \({z_1} = 4 - 2i\). Hãy tìm phần ảo của số phức \({z_2} = {\left( {1 - 2i} \right)^2} + \overline {{z_1}} \).
A. -6i
B. -2i
C. -2
D. -6
05/11/2021 7 Lượt xem
- 37 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận