Câu hỏi:
Cho hàm số f(x), bảng xét dấu f'(x) của như sau:
Số điểm cực trị của hàm số đã cho là
A. 1
B. 2
C. 3
D. 0
Câu 1: Trong không gian hệ tọa độ Oxyz, mặt phẳng \(\left( \alpha \right):x - 2y + 3z + 2018 = 0\) có một véctơ pháp tuyến là
A. \(\overrightarrow n = \left( { - 1; - 2;3} \right)\)
B. \(\overrightarrow n = \left( {1; - 2;3} \right)\)
C. \(\overrightarrow n = \left( {1;2;3} \right)\)
D. \(\overrightarrow n = \left( { - 1;2;3} \right)\)
05/11/2021 1 Lượt xem
Câu 2: Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn \(f\left( 1 \right) = 1,\,\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^2}{\rm{d}}x = \frac{9}{5}} \) và \(\int\limits_0^1 {f\left( {\sqrt x } \right){\rm{d}}x} = \frac{2}{5}\). Tính tích phân \(I = \int\limits_0^1 {f\left( x \right){\rm{d}}x} \).
A. \(I = \frac{3}{5}\)
B. \(I = \frac{1}{4}\)
C. \(I = \frac{3}{4}\)
D. \(I = \frac{1}{5}\)
05/11/2021 1 Lượt xem
Câu 3: Cho hình chóp S.ABC có SA, SB, S đôi một vuông góc với nhau và \(SA = 2\sqrt 3 \), SB = 2, SC = 3. Tính thể tích khối chóp S.ABC.
A. \(V = 6\sqrt 3 .\)
B. \(V = 4\sqrt 3 .\)
C. \(V = 2\sqrt 3 .\)
D. \(V = 12\sqrt 3 .\)
05/11/2021 2 Lượt xem
Câu 4: Cho hàm số \(y = \frac{{ax + b}}{{cx + d}};\left( {a,b,c,d \in R} \right)\) có bảng biến thiên như sau:
6184b99ba038a.png)
Mệnh đề nào dưới đây đúng?
6184b99ba038a.png)
A. ac > 0,ab > 0
B. ad < 0;bc > 0
C. ab > 0;cd > 0
D. cd < 0;bd > 0
05/11/2021 2 Lượt xem
Câu 5: Biết \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm thuộc hai nhánh khác nhau của đồ thị hàm số \(y = \frac{{x + 4}}{{x + 1}}\) sao cho độ dài đoạn thẳng AB nhỏ nhất. Tính \(P = y_A^2 + y_B^2 - {x_A}{x_B}\).
A. \(P = 10 - \sqrt 3 \)
B. \(P = 6 - 2\sqrt 3 \)
C. P = 6
D. P = 10
05/11/2021 1 Lượt xem
Câu 6: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA' = a,AD = 2a. Gọi góc giữa đường chéo A'C và mặt phẳng đáy (ABCD) là \(\alpha\). Khi đó \(\tan \alpha\) bằng
6184b99c4194c.png)
6184b99c4194c.png)
A. \(\tan \alpha = \frac{{\sqrt 5 }}{5}\)
B. \(\tan \alpha = \sqrt 5 \)
C. \(\tan \alpha = \frac{{\sqrt 3 }}{3}\)
D. \(\tan \alpha = \sqrt 3 \)
05/11/2021 3 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Trần Quang Khải
- 2 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 285
- 50
-
65 người đang thi
- 1.3K
- 122
- 50
-
24 người đang thi
- 1.1K
- 75
- 50
-
68 người đang thi
- 901
- 35
- 50
-
44 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận