Câu hỏi:

Cho hàm số \(f\left( x \right)\) liên tục, có đạo hàm trên \(\mathbb{R}\), \(f\left( 2 \right) = 16\) và \(\int\limits_0^8 {f\left( x \right)dx = 4} \). Tích phân \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)dx} \) bằng:

225 Lượt xem
05/11/2021
3.6 9 Đánh giá

A. 112

B. 12

C. 56

D. 144

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Giải phương trình \({4^{x - 1}} = {32^{3 - 2x}}\)

A. \(\dfrac{{17}}{{12}}\)

B. \(\dfrac{1}{8}\)

C. \(\dfrac{4}{3}\)

D. \(\dfrac{3}{4}\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 2:

Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 3:

Trong các hàm số sau đây, hàm số nào nghịch biến trên \(\mathbb{R}\)?

A. \(y = {\left( {\dfrac{1}{2}} \right)^{ - x}}\)

B. \(y = {\left( {\dfrac{2}{e}} \right)^x}\)

C. \(y = {\left( {\sqrt 3 } \right)^x}\)

D. \(y = {\left( {\dfrac{\pi }{3}} \right)^x}\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 6:

Tìm giá trị cực đại của hàm số \(y = {x^4} - 4{x^2} + 3\)

A. \({y_{C{\rm{D}}}} = 3\)

B. \({y_{C{\rm{D}}}} =  - 1\)

C. \({y_{C{\rm{D}}}} =  - 6\)

D. \({y_{C{\rm{D}}}} = 8\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
Thông tin thêm
  • 14 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh