Câu hỏi:
Cho a, b, c là các số thực thuộc đoạn [1; 2] thỏa mãn \(\log _2^3a + \log _2^3b + \log _2^3c \le 1.\) Khi biểu thức \(P = {a^3} + {b^3} + {c^3} - 3\left( {{{\log }_2}{a^a} + {{\log }_2}{b^b} + {{\log }_2}{c^c}} \right)\) đạt giá trị lớn nhất thì tổng a + b + c là
A. 3
B. \({3.2^{\frac{1}{{\sqrt[3]{3}}}}}\)
C. 4
D. 6
Câu 1: Cho hình hộp chữ nhật ABCD.A'B'C'D' có thể tích bằng 1 và G là trọng tâm DBCD'. Thể tích của khối chóp G.ABC' là
A. \(V = \frac{1}{3}.\)
B. \(V = \frac{1}{6}.\)
C. \(V = \frac{1}{12}.\)
D. \(V = \frac{1}{18}.\)
05/11/2021 8 Lượt xem
Câu 2: Tập nghiệm của bất phương trình \({\left( {\frac{1}{{1 + {a^2}}}} \right)^{2x + 1}} > 1\) (với a là tham số, a khác 0) là
A. \(\left( { - \infty ; - \frac{1}{2}} \right).\)
B. \(\left( { - \infty ;0} \right).\)
C. \(\left( { - \frac{1}{2}; + \infty } \right).\)
D. \(\left( {0; + \infty } \right).\)
05/11/2021 8 Lượt xem
Câu 3: Cho khối chóp S.ABC có đáy là tam giác đều cạnh bằng \(a,SA = a\sqrt 3 ,\) cạnh bên SA vuông góc với đáy. Thể tích khối chóp S.ABC bằng
A. \(\frac{{{a^3}\sqrt 3 }}{2}.\)
B. \(\frac{{{a^3}}}{2}.\)
C. \(\frac{{{a^3}\sqrt 3 }}{4}.\)
D. \(\frac{{{a^3}}}{4}.\)
05/11/2021 9 Lượt xem
Câu 4: Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Số nghiệm của phương trình f(x) = -1 là
6184b97a62dd6.png)
6184b97a62dd6.png)
A. 1
B. 2
C. 4
D. 3
05/11/2021 10 Lượt xem
Câu 5: Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}}\) trên tập hợp \(D = \left( { - \infty ; - 1} \right) \cup \left[ {1;\frac{3}{2}} \right].\) Tính P = M + m.
A. P = 2
B. P = 0
C. \(P = - \sqrt 5 .\)
D. \(P = \sqrt 3 .\)
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
- 16 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
39 người đang thi
- 1.3K
- 122
- 50
-
44 người đang thi
- 1.2K
- 75
- 50
-
40 người đang thi
- 974
- 35
- 50
-
76 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận